Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 2020
4363.
Thinius, Marco; Polaczek, Christine; Langner, Markus; Bräkling, Steffen; Haack, Alexander; Kersten, Hendrik; Benter, Thorsten
Charge Retention/Charge Depletion in ESI-MS: Experimental Evidence
Journal of the American Society for Mass Spectrometry, 31 (4) :773-784
April 20204362.
Haack, Alexander; Polaczek, Christine; Tsolakis, Manuel; Thinius, Marco; Kersten, Hendrik; Benter, Thorsten
Charge Retention/Charge Depletion in ESI-MS: Theoretical Rationale
Journal of the American Society for Mass Spectrometry, 31 (4) :785-795
April 20204361.
Haack, Alexander; Polaczek, Christine; Tsolakis, Manuel; Thinius, Marco; Kersten, Hendrik; Benter, Thorsten
Charge Retention/Charge Depletion in ESI-MS: Theoretical Rationale
Journal of the American Society for Mass Spectrometry, 31 (4) :785-795
April 20204360.
Haack, Alexander; Polaczek, Christine; Tsolakis, Manuel; Thinius, Marco; Kersten, Hendrik; Benter, Thorsten
Charge Retention/Charge Depletion in ESI-MS: Theoretical Rationale
Journal of the American Society for Mass Spectrometry, 31 (4) :785-795
April 20204359.
Crouse, Jeff; Haack, Alexander; Benter, Thorsten; Hopkins, W. Scott
Understanding Nontraditional Differential Mobility Behavior: A Case Study of the Tricarbastannatrane Cation, N(CH \(_{2}\) CH \(_{2}\) CH \(_{2}\) ) \(_{3}\) Sn \(^{+}\)
Journal of the American Society for Mass Spectrometry, 31 (4) :796-802
April 20204358.
Crouse, Jeff; Haack, Alexander; Benter, Thorsten; Hopkins, W. Scott
Understanding Nontraditional Differential Mobility Behavior: A Case Study of the Tricarbastannatrane Cation, N(CH \(_{2}\) CH \(_{2}\) CH \(_{2}\) ) \(_{3}\) Sn \(^{+}\)
Journal of the American Society for Mass Spectrometry, 31 (4) :796-802
April 20204357.
Crouse, Jeff; Haack, Alexander; Benter, Thorsten; Hopkins, W. Scott
Understanding Nontraditional Differential Mobility Behavior: A Case Study of the Tricarbastannatrane Cation, N(CH 2 CH 2 CH 2 ) 3 Sn +
Journal of the American Society for Mass Spectrometry, 31 (4) :796-802
April 20204356.
Izak-Nau, Emilia; Campagna, Davide; Baumann, Christoph; Göstl, Robert
Polymer mechanochemistry-enabled pericyclic reactions
Polymer Chemistry, 11 (13) :2274--2299
March 2020
ISSN: 1759-99624355.
Haack, Alexander; Benter, Thorsten; Kersten, Hendrik
Computational analysis of the proton bound acetonitrile dimer, (ACN) \(_{2}\) H \(^{+}\)
Rapid Communications in Mass Spectrometry
March 20204354.
Haack, Alexander; Benter, Thorsten; Kersten, Hendrik
Computational analysis of the proton bound acetonitrile dimer, (ACN) \(_{2}\) H \(^{+}\)
Rapid Communications in Mass Spectrometry
March 20204353.
Haack, Alexander; Benter, Thorsten; Kersten, Hendrik
Computational analysis of the proton bound acetonitrile dimer, (ACN) 2 H +
Rapid Communications in Mass Spectrometry
March 20204352.
Sun, Jing; Su, Juanjuan; Ma, Chao; Göstl, Robert; Herrmann, Andreas; Liu, Kai; Zhang, Hongjie
Fabrication and Mechanical Properties of Engineered Protein-Based Adhesives and Fibers
Advanced Materials, 32 (6) :1906360
February 2020
ISSN: 1521-40954351.
[english] Meuter, Nico; Spinnen, Sebastian; Tausch, Michael W.
Two Versatile Experiments for Teaching Photochemistry: Photon Upconversion by TTA and All Optical INHIBIT Logical Gate
EPA (European Photochemistry Association) Newsletter (97) :9-15
February 20204350.
Stratigaki, Maria; Baumann, Christoph; Breemen, Lambert C. A. van; Heuts, Johan P. A.; Sijbesma, Rint P.; Göstl, Robert
Fractography of poly(N-isopropylacrylamide) hydrogel networks crosslinked with mechanofluorophores using confocal laser scanning microscopy
Polymer Chemistry, 11 (2) :358--366
January 2020
ISSN: 1759-99624349.
Tong, M. L.; Kunz, K.; Jaschinski, M.; Holzschneider, K.; Celik, I. E.; Kirsch, S. F.
1-Nitrogen-Functionalized 2-Haloalkenes (Update 2020)
Science of Synthesis, Knowledge Updates (2) :235–275
20204348.
Budde, Christian; Farkas, B{\'a}lint
A {D}esch-{S}chappacher perturbation theorem for bi-continuous semigroups
Math. Nachr., 293 (6) :1053-1073
20204347.
Budde, Christian; Farkas, Bálint
A Desch-Schappacher perturbation theorem for bi-continuous semigroups
Math. Nachr., 293 (6) :1053-1073
20204346.
Ankirchner, Stefan; Kruse, Thomas; Urusov, Mikhail; others
A functional limit theorem for coin tossing Markov chains
, Annales de l'Institut Henri Poincaré, Probabilités et StatistiquesVolume56, Page 2996--3019
Institut Henri Poincaré
20204345.
Ankirchner, Stefan; Kruse, Thomas; Urusov, Mikhail; others
A functional limit theorem for coin tossing Markov chains
Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 56 (4) :2996–3019
2020
Publisher: Institute of Mathematical Statistics4344.
Teng, Long; Lapitckii, Aleksandr; Günther, Michael
A multi-step scheme based on cubic spline for solving backward stochastic differential equations
Applied Numerical Mathematics, 150 :117–138
2020
Publisher: Elsevier4343.
Teng, Long; Lapitckii, Aleksandr; Günther, Michael
A multi-step scheme based on cubic spline for solving backward stochastic differential equations
Applied Numerical Mathematics, 150 :117--138
April 2020
Publisher: North-Holland4342.
Teng, Long; Lapitckii, Aleksandr; Günther, Michael
A multi-step scheme based on cubic spline for solving backward stochastic differential equations
Applied Numerical Mathematics, 150 :117–138
2020
Publisher: Elsevier4341.
Teng, Long; Wu, Xueran; Günther, Michael; Ehrhardt, Matthias
A new methodology to create valid time-dependent correlation matrices via isospectral flows
ESAIM: Mathematical Modelling and Numerical Analysis, 54 (2) :361–371
2020
Publisher: EDP Sciences4340.
Teng, Long; Wu, Xueran; Günther, Michael; Ehrhardt, Matthias
A new methodology to create valid time-dependent correlation matrices via isospectral flows
ESAIM: Mathematical Modelling and Numerical Analysis, 54 (2) :361–371
2020
Publisher: EDP Sciences4339.
Teng, Long; Wu, Xueran; Günther, Michael; Ehrhardt, Matthias
A new methodology to create valid time-dependent correlation matrices via isospectral flows
ESAIM: Mathematical Modelling and Numerical Analysis, 54 (2) :361--371
February 2020
Publisher: EDP Sciences