Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 2025
5416.
Bolten, Matthias; Doganay, Onur Tanil; Gottschalk, Hanno; Klamroth, Kathrin
Non-convex shape optimization by dissipative Hamiltonian flows
Engineering Optimization, 57 :384--403
20255415.
Beck, Christian; Jentzen, Arnulf; Kleinberg, Konrad; Kruse, Thomas
Nonlinear Monte Carlo Methods with Polynomial Runtime for Bellman Equations of Discrete Time High-Dimensional Stochastic Optimal Control Problems
Appl. Math. Optim., 91 (1) :26
20255414.
Figueira, José Rui; Klamroth, Kathrin; Stiglmayr, Michael; Sudhoff Santos, Julia
On the Computational Complexity of Multi-Objective Ordinal Unconstrained Combinatorial Optimization
Operations Research Letters
20255413.
Löhken, Lara; Stiglmayr, Michael
On the multiobjective cable-trench problem
Journal of Combinatorial Optimization, 49 (55)
20255412.
Lorenz, Jan; Zwerschke, Tom; Günther, Michael; Schäfers, Kevin
Operator splitting for coupled linear port-Hamiltonian systems
Applied Mathematics Letters, 160 :109309
2025
Publisher: Elsevier5411.
Lorenz, Jan; Zwerschke, Tom; Günther, Michael; Schäfers, Kevin
Operator splitting for coupled linear port-Hamiltonian systems
Applied Mathematics Letters, 160 :109309
2025
Publisher: Elsevier5410.
Sinani, Mario; Wynn, Andrew; Palacios, Rafael
Physics-Informed Data-Driven Modelling of Nonlinear Aerodynamic Forces of the Pazy Wing
AIAA SciTech Forum, 6-10 January
01 20255409.
Vinod, Vivin; Lyu, Dongyu; Ruth, Marcel; R. Schreiner, Peter; Kleinekathöfer, Ulrich; Zaspel, Peter
Predicting Molecular Energies of Small Organic Molecules With Multi-Fidelity Methods
J. Comp. Chem., 46 (6) :e70056
20255408.
[german] Zeller, Diana; Bohrmann-Linde, Claudia; Mack, Nils; Schrader, Claudia
Produktion eigener VR-Lernsettings im Projekt FoPro-VR. Ein interdisziplinärer Lehransatz für die Lehramtsausbildung
In Mrohs, Lorenz; Franz, Julia; Herrmann, Dominik; Lindner, Konstantin; Staake, Thorsten, Editor, Digitales Lehren und Lernen an der Hochschule. Strategien - Bedingungen - Umsetzung
Page 191-204
Publisher: transcript, Bielefeld
2025
191-204ISBN: 9783839471203
5407.
Vinod, Vivin; Zaspel, Peter
QeMFi: A Multifidelity Dataset of Quantum Chemical Properties of Diverse Molecules
Sci. Data, 12 (1) :202
2025
Publisher: Nature Publishing Group
ISSN: 2052-44635406.
Xue, Chaoyang; Chen, Hui; McGillen, Max R.; Su, Hang; Cheng, Yafang; Kleffmann, Jörg; Li, Guo; Cazaunau, Mathieu; Colomb, Aurélie; Sciare, Jean; DeWitt, Langley; Marchand, Nicolas; Sarda-Esteve, Roland; Petit, Jean-Eudes; Kukui, Alexandre
Role of Heterogeneous Reactions in the Atmospheric Oxidizing Capacity in Island Environments
Environmental Science & Technology, 59 (6) :3153—3164
February 2025
ISSN: 0013-936X, 1520-58515405.
Clément, François; Doerr, Carola; Klamroth, Kathrin; Paquete, Luís
Searching Permutations for Constructing Uniformly Distributed Point Sets
PNAS
20255404.
Heintz, Chris; Kersten, Hendrik; Benter, Thorsten; Wissdorf, Walter
Signatures of Charged Droplets from ESI: A Statistical Analysis of Non-summed Mass Spectra Compared to APCI
Journal of the American Society for Mass Spectrometry, 36 (4) :839—849
April 2025
ISSN: 1044-0305, 1879-11235403.
Palitta, Davide; Schweitzer, Marcel; Simoncini, Valeria
Sketched and truncated polynomial Krylov methods: Evaluation of matrix functions
Numer. Linear Algebra Appl., 32 :e2596
20255402.
Liu, Qian; Yanchang, Zhang; Zuan, Wang; Wang, Miao; Zhao, Xiaowei
Small-signal stability of sequence-decomposed grid-forming IBRs with DC-link voltage dynamics
February 20255401.
Arora, Sahiba; Mui, Jonathan
Smoothing of operator semigroups under relatively bounded perturbations
20255400.
Santos, Daniela Dos; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Solving the Multiobejctive Quasi-Clique Problem
European Journal of Operational Research, 323 :409—424
20255399.
Elghazi, Bouchra; Jacob, Birgit; Zwart, Hans
Well-posedness of a class of infinite-dimensional port-Hamiltonian systems with boundary control and observation
January 20255398.
Acu, A.M.; Heilmann, Margareta; Raşa, I.
Convergence of linking Durrmeyer type modifications of generalized Baskatov operators
Bulleting of the Malaysian Math. Sciences Society5397.
Ehrhardt, Matthias
Ein einfaches Kompartment-Modell zur Beschreibung von Revolutionen am Beispiel des Arabischen Frühlings5396.
Günther, Michael
Einführung in die Finanzmathematik5395.
Al{\i}, G; Bartel, A
Electrical RLC networks and diodes5394.
Gjonaj, Erion; Bahls, Christian Rüdiger; Bandlow, Bastian; Bartel, Andreas; Baumanns, Sascha; Belzen, F; Benderskaya, Galina; Benner, Peter; Beurden, MC; Blaszczyk, Andreas; others
Feldmann, Uwe, 143 Feng, Lihong, 515 De Gersem, Herbert, 341 Gim, Sebasti{\'a}n, 45, 333
MATHEMATICS IN INDUSTRY 14 :5875393.
Ehrhardt, Matthias
für Angewandte Analysis und Stochastik5392.
Ehrhardt, Matthias; Günther, Michael; Striebel, Michael
Geometric Numerical Integration Structure-Preserving Algorithms for Lattice QCD Simulations