Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 1987
192.
Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.; Beardsworth, R.
Calculated rotation-vibration energies for HOC+
Journal of Molecular Spectroscopy, 121 (2) :450-452
1987191.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Wang, Ding Chang
High resolution studies of the b\(^{1}\)\(\Sigma\)\(^{+}\) - X\(^{3}\)\(\Sigma\) emission system of SeS
Molecular Physics, 60 (2) :277-290
1987190.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Wang, Ding Chang
High resolution studies of the b\(^{1}\)\(\Sigma\)\(^{+}\) - X\(^{3}\)\(\Sigma\) emission system of SeS
Molecular Physics, 60 (2) :277-290
1987189.
Fink, Ewald H.; Kruse, H.; Ramsay, D. A.; Wang, Ding Chang
High resolution studies of the b1Σ+ - X3Σ emission system of SeS
Molecular Physics, 60 (2) :277-290
1987188.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
High-resolution study of the emission system of \(^{80}\)SeO
Journal of Molecular Spectroscopy, 125 (1) :66-75
1987187.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
High-resolution study of the emission system of \(^{80}\)SeO
Journal of Molecular Spectroscopy, 125 (1) :66-75
1987186.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
High-resolution study of the emission system of 80SeO
Journal of Molecular Spectroscopy, 125 (1) :66-75
1987185.
Franik, R.; Tausch, Michael W.; Autorenteam
KLAUSUR- UND ABITURTRAINING CHEMIE, Aufgabensammlung mit Lösungen und weiterführenden Informationen für die S II, 7 Bände
Publisher: Aulis Deubner\&Co KG, Köln
1987184.
[german] Tausch, Michael W.
Photochemische cis-trans Isomerisierungen
Der mathematische und naturwissenschaftliche Unterricht (MNU), 40 :92
1987183.
Tausch, Michael W.; Fischer, W.; Glöckner, W.; Köhler-Degner, M.; Nöding, S.; Wolf, H.
STOFF UND FORMEL - Chemiebuch für Gymnasien, S I, 291 Seiten
Publisher: C. C. Buchner, Bamberg
1987182.
Tausch, Michael W.; Fischer, W.; Glöckner, W.; Köhler-Degner, M.; Nöding, S.; Wolf, H.
STOFF UND FORMEL - Chemiebuch für Gymnasien; Ausgabe NRW, S I, 291 Seiten
Publisher: C. C. Buchner, Bamberg
1987181.
Tausch, Michael W.; Fischer, W.; Glöckner, W.; Köhler-Degner, M.; Nöding, S.; Wolf, H.
STOFF UND FORMEL - Lehrerbände mit didaktischen Hinweisen und Lösungen der Aufgaben zu STOFF UND FORMEL - Chemiebuch für Gymnasien und Ausgabe NRW
Publisher: C. C. Buchner, Bamberg
1987- 1986
180.
Maten, E. Jan W.; Sleijpen, Gerard L. G.
A convergence analysis of Hopscotch methods for fourth order parabolic equations
Numerische Mathematik, 49 (2-3) :275--290
March 1986
Publisher: Springer Science and Business Media {LLC}179.
Jensen, Per; Spirko, Vladim{í}r
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986178.
Jensen, Per; Spirko, Vladim{í}r
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986177.
Jensen, Per; Spirko, Vladim{í}r; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Extension to H\(_{2}\)D\(^{+}\) and D\(_{2}\)H\(^{+}\)
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986176.
Jensen, Per; Spirko, Vladim{í}r; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Extension to H\(_{2}\)D\(^{+}\) and D\(_{2}\)H\(^{+}\)
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986175.
Jensen, Per; Spirko, Vladimír
A new Morse-oscillator based Hamiltonian for H3+: Calculation of line strengths
Journal of Molecular Spectroscopy, 118 (1) :208-231
1986174.
Jensen, Per; Spirko, Vladimír; Bunker, Philip R.
A new Morse-oscillator based Hamiltonian for H3+: Extension to H2D+ and D2H+
Journal of Molecular Spectroscopy, 115 (2) :269-293
1986173.
Adams, Warren P; Sherali, Hanif D
A tight linearization and an algorithm for zero-one quadratic programming problems
Management Science, 32 (10) :1274--1290
1986
Publisher: INFORMS172.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC\(^{+}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986171.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC\(^{+}\) calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986170.
Beardsworth, R.; Bunker, Philip R.; Jensen, Per; Kraemer, Wolfgang P.
Ab initio rotation-vibration energies of HOC+ calculated using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 118 (1) :40-49
1986169.
Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986168.
Kraemer, Wolfgang P.; Roos, B. O.; Bunker, Philip R.; Jensen, Per
An ab initio calculation of the rotation-vibration energies of the state of CCH using the nonrigid bender Hamiltonian
Journal of Molecular Spectroscopy, 120 (1) :236-238
1986