Applied and Computational Mathematics (ACM)

Coupled DAE Problems

A circuit (DAE model) coupled to a magnetostatic field device (PDE model)

Coupled Problems of differential-algebraic equations (DAEs) arise typically from either multiphysical modeling (e.g. in circuit simulation with heating) or from refined modeling, where crucial parts of the original problem are replaced by a better, but computational more expensive model (e.g. circuits refined by field models). Furthermore splitting methods may turn a monolithic DAE problem into coupled subproblems, e.g. because of different time scales (multirate). In any case the DAEs arise from network approaches or space-discretization of PDAEs (Partial Differential Algebraic Equations).

Often the coupled equations have quite different properties, i.e., symmetries, definiteness or time scales. Thus the coupled system must be analyzed (e.g. the index) and tailored methods have to be developed (e.g. dynamic iteration).

Details

Publications



2016

3418.

Teng, Long; Ehrhardt, Matthias; Günther, Michael
Modelling stochastic correlation with modified Ornstein-Uhlenbeck process
Progress in Industrial Mathematics at ECMI 2014, Page 113–120
Springer Heidelberg
Publisher: Springer Cham
2016

3417.

Teng, Long; Ehrhardt, Matthias; Günther, Michael
Modelling stochastic correlation with modified Ornstein-Uhlenbeck process
Progress in Industrial Mathematics at ECMI 2014, Page 113–120
Springer Heidelberg
Publisher: Springer Cham
2016

3416.

Teng, Long; Ehrhardt, Matthias; Günther, Michael
Modelling stochastic correlation with modified Ornstein-Uhlenbeck process
Progress in Industrial Mathematics at ECMI 2014, Page 113–120
Springer Heidelberg
Publisher: Springer Cham
2016

3415.

Hoffmann, Heiko; Tausch, Michael W.
Modellreaktionen mit Sonnenlicht oder Taschenlampe
Nachrichten aus der Chemie, 64 (11) :1090--1093
2016
Publisher: Wiley

3414.

Kossaczk{\'{y}}, I.; Ehrhardt, M.; Günther, M.
Modifications of the {PCPT} method for {HJB} equations
Publisher: Author(s)
2016

3413.


Modifications of the PCPT method for HJB equations
, AIP Conference ProceedingsVolume1773, Page 030002
AIP Publishing LLC
2016

3412.

Kossaczkỳ, I; Ehrhardt, Matthias; Günther, Michael
Modifications of the PCPT method for HJB equations
, 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16Volume1773, Page 030002
Publisher: American Institute of Physics
2016

3411.

Kossaczkỳ, I; Ehrhardt, Matthias; Günther, Michael
Modifications of the PCPT method for HJB equations
, 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16Volume1773, Page 030002
Publisher: American Institute of Physics
2016

3410.

Kossaczkỳ, I; Ehrhardt, Matthias; Günther, Michael
Modifications of the PCPT method for HJB equations
, 8th International Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’16Volume1773, Page 030002
Publisher: American Institute of Physics
2016

3409.

Schweitzer, Marcel
Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices
Linear Algebra Appl., 507 :486-498
2016

3408.

Schweitzer, Marcel
Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices
Linear Algebra Appl., 507 :486-498
2016

3407.

Schweitzer, Marcel
Monotone convergence of the extended Krylov subspace method for Laplace-Stieltjes functions of Hermitian positive definite matrices
Linear Algebra Appl., 507 :486-498
2016

3406.

Knechtli, Francesco; Günther, Michael; Peardon, Michael
Monte Carlo methods
from SpringerBriefs in Physics
Page 35–53
Publisher: Springer Netherlands
2016
35–53

3405.

Knechtli, Francesco; Günther, Michael; Peardon, Michael
Monte Carlo methods
from SpringerBriefs in Physics
Page 35–53
Publisher: Springer Netherlands
2016
35–53

3404.

Frobel, Dominique-Jacqueline
Moose und Flechten an ausgewählten Plätzen im Stadtgebiet von Wuppertal
2016

3403.

Bolten, Matthias; Kahl, K.; Sokolović, S.
Multigrid methods for Tensor structured Markov chains with low rank approximation
SIAM J. Sci. Comput., 38 (2) :A649-A667
2016

3402.

Bolten, M.; Kahl, K.; Sokolović, S.
Multigrid methods for Tensor structured Markov chains with low rank approximation
SIAM J. Sci. Comput., 38 (2) :A649-A667
2016

3401.

Bolten, M.; Kahl, K.; Sokolović, S.
Multigrid methods for Tensor structured Markov chains with low rank approximation
SIAM J. Sci. Comput., 38 (2) :A649--A667
2016

3400.

Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate {GARK} Schemes for Multiphysics Problems
Scientific Computing in Electrical Engineering
Page 115--121
Publisher: Springer International Publishing
2016
115--121

3399.

Hachtel, Christoph; Kerler-Back, Johanna; Bartel, Andreas; Günther, Michael; Stykel, Tatjana
Multirate DAE/ODE-Simulation and Model Order Reduction for Coupled Circuit-Field Systems
2016

3398.

Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate GARK schemes for multiphysics problems
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor, Scientific Computing in Electrical Engineering: SCEE 2014, Wuppertal, Germany, July 2014fromMathematics in Industry, Page 115–121
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor
Publisher: Springer Cham
2016

3397.

Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate GARK schemes for multiphysics problems
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor, Scientific Computing in Electrical Engineering: SCEE 2014, Wuppertal, Germany, July 2014fromMathematics in Industry, Page 115–121
In Bartel, Andreas and Clemens, Markus and Günther, Michael and ter Maten, E. Jan W., Editor
Publisher: Springer Cham
2016

3396.

Bartel, Andreas; Günther, Michael; Hachtel, Christoph; Sandu, Adrian
Multirate GARK schemes for multiphysics problems
:115--121
2016

3395.

Günther, Michael; Sandu, Adrian
Multirate generalized additive Runge Kutta methods
Numerische Mathematik, 133 (3) :497–524
2016
Publisher: Springer New York

3394.

Günther, Michael; Sandu, Adrian
Multirate generalized additive Runge Kutta methods
Numerische Mathematik, 133 (3) :497–524
2016
Publisher: Springer New York