Multirate

Highly integrated electric cicuits show a phenomenon called latency. That is, a processed signal causes activity only in a small subset of the whole circuit (imagine a central processing unit), whereas the other part of the system behaves almost constant over some time - is latent. Such an electric system can be described as coupled system, where the waveforms show different time scales, also refered to as multirate.
More generally, any coupled problem formulation due to coupled physical effects, may cause a multirate problem: image the simulation of car driving on the road, there you need a model for the wheel, the chassis, the dampers, the road,... (cf. co-simulation). Again each system is covered by their own time constant, which might vary over several orders of magnitude comparing different subsystems.
Classical methods cannot exploit this multirate potential, but resolve everything on the finest scale. This causes an over sampling of the latent components. In constrast, Co-simulation or especially dedicated multirate methods are designed to use the inherent step size to resolve the time-domain behaviour of each subystem with the required accuracy. This requires a time-stepping for each.
Group members working in that field
- Andreas Bartel
- Michael Günther
Former and ongoing Projects
- CoMSON
- ICESTARS
- 03GUNAVN
Cooperations
- Herbert de Gersem, K.U. Leuven, Belgium
- Jan ter Maten, TU Eindhoven and NXP, the Netherlands
Publications
- 2021
4564.
Felpel, M.; Kienitz, J.; McWalter, T. A.
Effective stochastic volatility: Applications to {ZABR}-type models
Quantitative Finance, 21 (5) :837-852
2021
Publisher: Routledge4563.
Felpel, M.; Kienitz, J.; McWalter, T. A.
Effective stochastic volatility: applications to ZABR-type models
Quantitative Finance, 21 (5) :837–852
2021
Publisher: Routledge4562.
Haussmann, N.; Zang, M.; Stroka, S.; Mease, R.; Schmuelling, B.; Clemens, M.
Efficient Assessment of the Human Exposure to Low-Frequency Magnetic Fields Based on Free Space Field Measurements
23rd International Conference on the Computation of Electromagnetic Fields (COMPUMAG 2021), Cancun, Mexico, Online Conference, 16.-21.01.2022. Two-page digest submitted.
20214561.
Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan
Eigenstructure and iterates for uniquely ergodic Kantorovich modifications of operators II
Positivity, 25 :1585-1599
20214560.
[german] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Eine Lehrkräfte-Fortbildung im Portrait: Lowcost Experimente zu verschiedenen Brennstoffzelltypen für den Einsatz im Chemieunterricht.
CHEMKON
20214559.
Alameddine, Jean-Marco; others
Electromagnetic Shower Simulation for CORSIKA 8
PoS, ICRC2021 :428
20214558.
Viviani, Emma; Di Persio, Luca; Ehrhardt, Matthias
Energy markets forecasting. From inferential statistics to machine learning: The German case
Energies, 14 (2) :364
2021
Publisher: MDPI4557.
Viviani, Emma; Di Persio, Luca; Ehrhardt, Matthias
Energy markets forecasting. From inferential statistics to machine learning: The German case
Energies, 14 (2) :364
2021
Publisher: MDPI4556.
Viviani, Emma; Di Persio, Luca; Ehrhardt, Matthias
Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case
Energies, 14 (2) :364
January 2021
Publisher: MDPI
ISSN: 1996-10734555.
Energy Markets Forecasting. From Inferential Statistics to Machine Learning: The German Case. Energies 2021, 14, 364
20214554.
Kossaczk{\'a}, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order {WENO} shock-capturing schemes with deep learning
Res. Appl. Math., 12 :100201
2021
Publisher: Elsevier4553.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order WENO shock-capturing schemes with deep learning
Results in Applied Mathematics, 12 :100201
2021
Publisher: Elsevier4552.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order WENO shock-capturing schemes with deep learning
Results in Applied Mathematics, 12 :100201
2021
Publisher: Elsevier4551.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order WENO shock-capturing schemes with deep learning
Results in Applied Mathematics, 12 :100201
2021
Publisher: Elsevier4550.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Enhanced fifth order WENO shock-capturing schemes with deep learning
Results in Applied Mathematics, 12 :100201
2021
Publisher: Elsevier4549.
Farkas, Bálint; Csomós, Petra; Kovács, Balázs
Error estimates for a splitting integrator for semilinear boundary coupled systems
IMA J. Numerical Analysis
20214548.
Stapmanns, J.; Hahne, J.; Helias, M.; Bolten, Matthias; Diesmann, M.; Dahmen, D.
Event-based update of synapses in voltage-based learning rules
Front. Neuroinform., 15 :15
20214547.
Stapmanns, J.; Hahne, J.; Helias, M.; Bolten, M.; Diesmann, M.; Dahmen, D.
Event-based update of synapses in voltage-based learning rules
Front. Neuroinform., 15 :15
20214546.
Stapmanns, J.; Hahne, J.; Helias, M.; Bolten, M.; Diesmann, M.; Dahmen, D.
Event-based update of synapses in voltage-based learning rules
Front. Neuroinform., 15 :15
20214545.
Glück, Jochen; Mugnolo, Delio
Eventual domination for linear evolution equations
Math. Z., 299 (3-4) :1421--1443
20214544.
Abreu, Pedro; others
Expected performance of the AugerPrime Radio Detector
PoS, ICRC2021 :262
20214543.
Tovar, Carmen M.; Haack, Alexander; Barnes, Ian; Bejan, Iustinian Gabriel; Wiesen, Peter
Experimental and theoretical study of the reactivity of a series of epoxides with chlorine atoms at 298 K
Physical Chemistry Chemical Physics, 23 (9) :5176-5186
20214542.
Tovar, Carmen M.; Haack, Alexander; Barnes, Ian; Bejan, Iustinian Gabriel; Wiesen, Peter
Experimental and theoretical study of the reactivity of a series of epoxides with chlorine atoms at 298 K
Physical Chemistry Chemical Physics, 23 (9) :5176-5186
20214541.
Tovar, Carmen M.; Haack, Alexander; Barnes, Ian; Bejan, Iustinian Gabriel; Wiesen, Peter
Experimental and theoretical study of the reactivity of a series of epoxides with chlorine atoms at 298 K
Physical Chemistry Chemical Physics, 23 (9) :5176-5186
20214540.
Grandrath, Rebecca; Bohrmann-Linde, Claudia
Experimentalkurs zu Biologischen Brennstoffzellen. Begleitendes E-Book für die Sekundarstufe II [Schülerversion]
2021