Applied and Computational Mathematics (ACM)

Multirate Partial Differential Algebraic Equations

In radio frequency (RF) applications, electric circuits produce signals exhibiting fast oscillations, whereas the amplitude and/or frequency change slowly in time. Thus, solving a system of differential algebraic equations (DAEs), which describes the circuit's transient behaviour, becomes inefficient, since the fast rate restricts the step sizes in time. A multivariate model is able to decouple the widely separated time scales of RF signals and provides an alternative approach. Consequently, a system of DAEs changes into a system of multirate partial differential algebraic equations (MPDAEs). The determination of multivariate solutions allows for the exact reconstruction of corresponding time-dependent signals. Hence, an efficient numerical simulation is obtained by exploiting the periodicities in fast time scales. On the one hand, the simulation of enveloppe-modulated signals requires the solution of initial-boundary value problems of the MPDAEs. On the other hand, the simulation of quasiperiodic signals implies multiperiodic boundary conditions only for the MPDAEs. In case of quasiperiodic signals, a method of characteristics solves the multirate model efficiently, since the system of partial differential algebraic equations exhibits a hyperbolic structure.

Publications



2021

4518.

Hachtel, Christoph; Bartel, Andreas; Günther, Michael; Sandu, Adrian
Multirate implicit Euler schemes for a class of differential-algebraic equations of index-1
Journal of Computational and Applied Mathematics, 387 :112499
2021
Publisher: North-Holland

4517.

Günther, Michael; Sandu, Adrian
Multirate linearly-implicit GARK schemes
BIT Numerical Mathematics :1--33
2021
Publisher: Springer Netherlands

4516.

Lübke, Marco
Neuartige multifunktionelle Tenside auf Basis nachwachsender Rohstoffe
2021

4515.

Claus, L.; Bolten, Matthias
Non-overlapping block smoothers for the Stokes equations
Num. Lin. Alg. Appl., 28 (6) :e2389
2021

4514.

Claus, L.; Bolten, M.
Non-overlapping block smoothers for the Stokes equations
Num. Lin. Alg. Appl., 28 (6) :e2389
2021

4513.

Claus, L.; Bolten, M.
Non-overlapping block smoothers for the Stokes equations
Num. Lin. Alg. Appl., 28 (6) :e2389
2021

4512.

Eichfelder, Gabriele; Klamroth, Kathrin; Niebling, Julia
Nonconvex constrained optimization by a filtering branch and bound
Journal of Global Optimization, 80 :31-61
2021

4511.

Mironchenko, Andrii; Kawan, Christoph; Glück, Jochen
Nonlinear small-gain theorems for input-to-state stability of infinite interconnections
Math. Control Signals Systems, 33 (4) :573--615
2021

4510.

Krämer, Veronika; Barwari, Beawer; Burgmann, Sebastian; Rohde, Martin; Rentschler, Simon; Holzknecht, Christopher; Gmelin, Christoph; Janoske, Uwe
Numerical analysis of an adhering droplet applying an adapted feedback deceleration technique
International Journal of Multiphase Flow, 145 :103808
December 2021
Publisher: Elsevier {BV}

4509.

Jacob, Birgit; Zwart, Hans
Observability for port-Hamiltonian systems
European Control Conference (ECC) :2052-2057
2021

4508.

Markert, Clara; Thinius, Marco; Lehmann, Laura; Heintz, Chris; Stappert, Florian; Wissdorf, Walter; Kersten, Hendrik; Benter, Thorsten; Schneider, Bradley B.; Covey, Thomas R.
Observation of charged droplets from electrospray ionization (ESI) plumes in API mass spectrometers
Analytical and Bioanalytical Chemistry
July 2021
ISSN: 1618-2642, 1618-2650

4507.

Friedhoff, S.; Southworth, B. S.
On "optimal" $h$-independent convergence of parareal and multigrid-reduction-in-time using Runge-Kutta time integration
Numer. Linear Algebra Appl., 28 (3)
2021

4506.

Friedhoff, S.; Southworth, B. S.
On "optimal" $h$-independent convergence of parareal and multigrid-reduction-in-time using Runge-Kutta time integration
Numer. Linear Algebra Appl., 28 (3) :Paper No. e2301, 30
2021

4505.

Friedhoff, S.; Southworth, B. S.
On "optimal" $h$-independent convergence of parareal and multigrid-reduction-in-time using Runge-Kutta time integration
Numer. Linear Algebra Appl., 28 (3) :Paper No. e2301, 30
2021

4504.

Farkas, Bálint; Friesen, Martin; Rüdiger, Barbara; Schroers, Dennis
On a class of stochastic partial differential equations with multiple invariant measures
NoDEA
2021

4503.

Glück, Jochen
On disjointness, bands and projections in partially ordered vector spaces
Positivity and its applications from Trends Math.
Page 141--171
Publisher: Birkhäuser/Springer, Cham
2021
141--171

4502.

Glück, Jochen
On the decoupled Markov group conjecture
Bull. Lond. Math. Soc., 53 (1) :240--247
2021

4501.

Farkas, Bálint; Nagy, Béla; Révész, Szilárd Gy.
On the weighted Bojanov-Chebyshev problem and the sum of translates method of Fenton
2021

4500.

Csomós, Petra; Ehrhardt, Matthias; Farkas, Bálint
Operator splitting for abstract Cauchy problems with dynamical boundary condition
Operators and Matrices, 15 (3) :903–935
2021
Publisher: Element d.o.o

4499.

Csomós, Petra; Ehrhardt, Matthias; Farkas, Bálint
Operator splitting for abstract Cauchy problems with dynamical boundary condition
Operators and Matrices, 15 (3) :903–935
2021
Publisher: Element d.o.o

4498.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Optimal trade execution in an order book model with stochastic liquidity parameters
SIAM Journal on Financial Mathematics, 12 (2) :788--822
2021
Publisher: Society for Industrial and Applied Mathematics

4497.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Optimal trade execution in an order book model with stochastic liquidity parameters
SIAM Journal on Financial Mathematics, 12 (2) :788–822
2021
Publisher: Society for Industrial and Applied Mathematics

4496.

De Sterck, H.; Falgout, R. D.; Friedhoff, S.; Krzysik, O. A.; MacLachlan, S. P.
Optimizing multigrid reduction-in-time and parareal coarse-grid operators for linear advection
Numer. Linear Algebra Appl., 28 (4) :Paper No. e2367, 22
2021

4495.

De Sterck, H.; Falgout, R. D.; Friedhoff, S.; Krzysik, O. A.; MacLachlan, S. P.
Optimizing multigrid reduction-in-time and parareal coarse-grid operators for linear advection
Numer. Linear Algebra Appl., 28 (4) :Paper No. e2367, 22
2021

4494.

De Sterck, H.; Falgout, R. D.; Friedhoff, S.; Krzysik, O. A.; MacLachlan, S. P.
Optimizing multigrid reduction-in-time and parareal coarse-grid operators for linear advection
Numer. Linear Algebra Appl., 28 (4) :Paper No. e2367, 22
2021