Multirate Partial Differential Algebraic Equations
In radio frequency (RF) applications, electric circuits produce signals exhibiting fast oscillations, whereas the amplitude and/or frequency change slowly in time. Thus, solving a system of differential algebraic equations (DAEs), which describes the circuit's transient behaviour, becomes inefficient, since the fast rate restricts the step sizes in time. A multivariate model is able to decouple the widely separated time scales of RF signals and provides an alternative approach. Consequently, a system of DAEs changes into a system of multirate partial differential algebraic equations (MPDAEs). The determination of multivariate solutions allows for the exact reconstruction of corresponding time-dependent signals. Hence, an efficient numerical simulation is obtained by exploiting the periodicities in fast time scales. On the one hand, the simulation of enveloppe-modulated signals requires the solution of initial-boundary value problems of the MPDAEs. On the other hand, the simulation of quasiperiodic signals implies multiperiodic boundary conditions only for the MPDAEs. In case of quasiperiodic signals, a method of characteristics solves the multirate model efficiently, since the system of partial differential algebraic equations exhibits a hyperbolic structure.
Publications
- 2021
4439.
Ehrhardt, Matthias
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Physical Review E, 103 (4) :043305
2021
Publisher: American Physical Society4438.
Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions
Physical Review E, 103 (4) :043305
2021
Publisher: American Physical Society4437.
Acu, Ana-Maria; Gonska, Heiner; Heilmann, Margareta
Remarks on a Bernstein-type operator of Aldaz, Kounchev and Render
20214436.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Results in Applied Mathematics
20214435.
Jacob, Birgit; Kaiser, Julia T.; Zwart, Hans
Riesz bases of port-Hamiltonian systems
SIAM J. Control Optim., 59 (6) :4646-4665
20214434.
Bartel, Andreas; Ehrhardt, Matthias; Günther, Michael
Rosenbrock--Wanner-Type Methods
20214433.
Rosenbrock-Wanner-Type Methods: Theory and Applications
In T. Jax and A. Bartel and M. Ehrhardt and M. Günther and G. Steinebach, Editor
Publisher: Springer
2021ISBN: 978-3030768096
4432.
Rosenbrock-Wanner-Type Methods: Theory and Applications
In Jax, Tim and Bartel, Andreas and Ehrhardt, Matthias and Günther, Michael and Steinebach, Gerd, Editor from Mathematics Online First Collections
Publisher: Springer Cham
2021ISBN: 978-3-030-76809-6
4431.
Rosenbrock-Wanner-Type Methods: Theory and Applications
In Jax, Tim and Bartel, Andreas and Ehrhardt, Matthias and Günther, Michael and Steinebach, Gerd, Editor from Mathematics Online First Collections
Publisher: Springer Cham
2021ISBN: 978-3-030-76809-6
4430.
Rosenbrock-Wanner-Type Methods: Theory and Applications
In Jax, Tim and Bartel, Andreas and Ehrhardt, Matthias and Günther, Michael and Steinebach, Gerd, Editor from Mathematics Online First Collections
Publisher: Springer Cham
2021ISBN: 978-3-030-76809-6
4429.
Abreu, Pedro; others
Search for upward-going showers with the Fluorescence Detector of the Pierre Auger Observatory
PoS, ICRC2021 :1140
20214428.
Kähne, B.; Clemens, M.
Semi-Explicit Time Integration of a Reduced Magnetic Vector Potential Magneto-Quasistatic Field Formulation
The 12th International Symposium on Electric and Magnetic Fields (EMF 2021), Online Conference, 06.-08.07.2021. Abstract accepted.
20214427.
Erdogdu, Duygu; Wissdorf, Walter; Allers, Maria; Kirk, Ansgar T.; Kersten, Hendrik; Zimmermann, Stefan; Benter, Thorsten
Simulation of Cluster Dynamics of Proton-Bound Water Clusters in a High Kinetic Energy Ion-Mobility Spectrometer
Journal of the American Society for Mass Spectrometry, 32 (9) :2436--2450
September 2021
ISSN: 1044-0305, 1879-11234426.
Gaul, Daniela; Klamroth, Kathrin; Stiglmayr, Michael
Solving the Dynamic Dial-a-Ride Problem Using a Rolling-Horizon Event-Based Graph
In M. Müller-Hannemann and F. Perea, Editor, 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2021) Volume 96 from Open Access Series in Informatics (OASIcs)
Page 8:1-8:16
Publisher: Schloss Dagstuhl - Leibniz-Zentrum für Informatik
2021
8:1-8:164425.
Weissen, Jennifer; Goettlich, Simone; Totzeck, Claudia
Space mapping-based optimization with the macroscopic limit of interacting particle systems
Optimization and Engineering, online
20214424.
Arora, Sahiba; Glück, Jochen
Spectrum and convergence of eventually positive operator semigroups
Semigroup Forum, 103 (3) :791--811
20214423.
Glück, Jochen; Mironchenko, Andrii
Stability criteria for positive linear discrete-time systems
Positivity, 25 (5) :2029--2059
20214422.
Jacob, Birgit; Skrepek, Nathanael
Stability of the multidimensional wave equation in port-Hamiltonian modelling
60th IEEE Conference on Decision and Control (CDC), Page 6188-6193
Austin
20214421.
Alves Junior, Antonio Augusto; others
Status of the novel CORSIKA 8 air shower simulation framework
PoS, ICRC2021 :284
20214420.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Stochastic Runge-Kutta--Munthe-Kaas methods in the modelling of perturbed rigid bodies
20214419.
Günther, Michael; Sandu, Adrian; Zanna, Antonella
Symplectic GARK methods for Hamiltonian systems
arXiv preprint arXiv:2103.04110
20214418.
Günther, Michael; Sandu, Adrian; Zanna, Antonella
Symplectic GARK methods for Hamiltonian systems
Preprint
20214417.
Günther, Michael; Sandu, Adrian; Zanna, Antonella
Symplectic GARK methods for Hamiltonian systems
Preprint
20214416.
Günther, Michael; Sandu, Adrian; Schäfers, Kevin; Zanna, Antonella
Symplectic GARK methods for partitioned Hamiltonian systems
Preprint
20214415.
Günther, Michael; Sandu, Adrian; Schäfers, Kevin; Zanna, Antonella
Symplectic GARK methods for partitioned Hamiltonian systems
Preprint
2021