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Introduction

This thesis deals with positivity preserving numerical integration schemes for
stochastic differential equations (SDEs), particularly in the context of pricing
interest rate derivatives. What is at issue here is a part of computational
finance as a subarea of applied mathematics.

Applied mathematics can be understood as a link between theory and
praxis. Stochastic analysis is the theoretical background in this thesis, es-
pecially stochastic differential equations as indicated by the title. Stochastic
differential equations allow to model observables that are driven by non-
deterministic phenomena.
On the other hand this thesis deals with financial mathematics. In fact the
problem of deriving numerical integration schemes that preserves positivity
arises from pricing interest rate derivatives. This requires the knowledge of
another area of applied mathematics: numerical analysis.

Numerical integration of stochastic differential equations is one partic-
ular part of numerical analysis. As for deterministic systems, geometric
integration schemes are mandatory if essential structural properties of the
underlying system have to be preserved. In this thesis we focus on positive
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Introduction 2

integration schemes as the analytical solution of the SDE is positive as well.
This problem is rather independent of financial mathematics as it appears in
various other applications. Thus also from a general point of view one may
aim at answering the question whether it is possible to develop a numerical
integration scheme which guarantees positivity, if the considered stochastic
process is positive, as well.

In this thesis the mathematical modelling of interest rates is based on
the Libor market model. In recent years the Libor market model has been
continuously refined. There are quite a few extensions but I want to con-
centrate on Constant Elasticity of Variance (CEV) and Displaced Diffusion
(DD). Introducing stochastic volatility improves the dynamics of the model.
Stochastic volatility then turns out to be a main part of the study.
All extensions have in common that numerical positivity of the integration
scheme decisively influences the quality of results.

The thesis is structured as follows:
The first chapter recalls some basic facts about Ito Diffusions, among other
things the theorems of Feynman-Kac and Girsanov. Moreover some criteria
for analytical positivity will be developed.
The second part deals with financial mathematics and motivates the need
for numerical schemes when pricing interest rate derivatives.
The third chapter gives a detailed description of numerical schemes for stochas-
tic differential equations. In order to develop some stochastic integration
schemes stochastic Taylor expansions are studied. Another important topic
is the Milstein theorem.
The next chapter is the very heart of this thesis. The integration schemes
developed above are examined concerning positivity.
The last chapter verifies the theoretical results by numerical tests. The thesis
is concluded by pointing out the main results in a summary.



CHAPTER I

Diffusion theory

Diffusion theory describes one special class of stochastic processes. It is of
much interest in this thesis as it provides many tools to model financial math-
ematical relations. This first chapter will only repeat some results of diffusion
theory which are essential for further modelling in finance. The reader who
is not familiar with stochastic processes will find the necessary facts about
stochastic analysis in appendix A.

There are two different topics discussed in this introductory chapter. We
start with a presentation of some essential results from diffusion theory, espe-
cially the theorems of Feynman-Kac and Girsanov. Secondly we consider the
aspects of analytical positivity of a diffusion process to enable an adequate
modelling.

1.1 Basic results

A stochastic process is called a diffusion process if it satisfies the (strong)
Markov property and if its paths Xt are continuous functions [KT81].
We do not need this abstract definition of a diffusion process but only a
special case.

Definition 1.1 (Ito diffusion) An Ito diffusion is a time homogeneous sto-
chastic process Xt : [t0,∞)× Ω → Rn which is the solution of the following
stochastic differential equation

(1.1) dXt = a(Xt)dt + b(Xt)dBt with Xt0 = x, t > t0.

Where Bt is an m-dimensional Brownian motion. The coefficient a : Rn → Rn

3



CHAPTER 1. DIFFUSION THEORY 4

is called the drift and b : Rn → Rn×m the diffusion. In this chapter we need
only the one-dimensional case with n = m = 1.

It is essential in the theory of Ito diffusions to study the analytical behaviour
only based on the knowledge of drift a and diffusion b. Therefore it is not nec-
essary to know the exact solution of the stochastic differential equation. In
this context the fundamental principle is the so-called generator of a stochas-
tic process Xt.

Definition 1.2 Let Xt be an Ito diffusion. Then the generator A is defined
by

(1.2) Af(x) = lim
t→0

Ex [f(Xt)]− f(x)

t
.

We denote the set of all functions such that the limit exists by DA. Later on
we see that C2

0(R) ⊂ DA.

This definition is generally quite complicated. To find a relation between
the generator A and the coefficients a and b we need some basic calculation.
First we define a function f ∈ C2

0(R) and apply Ito’s theorem A.25

f(Xt) = f(X0) +

t∫
0

(
a(Xs)

∂f

∂x
(Xs) +

1

2
b2(Xs)

∂2f

∂x2
(Xs)

)
ds

+

t∫
0

b(Xs)
∂f

∂x
(Xs)dBs.

Setting up the expectation one gets the following equation by using the
martingale property of the Ito integral (see (A.14))

E [f(Xt)] = f(X0) + E

 t∫
0

(
a(Xs)

∂f

∂x
(Xs) +

1

2
b2(Xs)

∂2f

∂x2
(Xs)

)
ds

 .

This schematic approach is not mathematically rigid. A complete proof can
be found in chapter 7 of [Øks00]. This equation leads to a simple represen-
tation of the generator of the Ito diffusion.

Theorem 1.3 Let Xt be an Ito diffusion given by

dXt = a(Xt)dt + b(Xt)dBt.
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Then the equation

(1.3) Af(x) = a(x)
∂f

∂x
(x) +

1

2
b2(x)

∂2f

∂x2

holds for the generator A and f ∈ C2
0(R). Applying the calculation above

one gets in an analogous manner

Theorem 1.4 (Dynkin’s formula) Let f ∈ C2
0(R) and Xt be an Ito dif-

fusion then

Ex [f(Xt)] = f(x) + Ex

 t∫
0

Af(Xs)ds

 .

Dynkin’s formula is the starting-point to deduce one of the main results in
the theory of stochastic analysis. This is the theorem of Feynman-Kac. For
that reason we define a function u as follows

u(t, x) = Ex [f(Xt)] .

Looking at Dynkin’s formula and computing the partial derivative with re-
spect to t one see that

∂u

∂t
= Ex [Af(Xt)] .

The generator A of the Ito diffusion commutates with the expectation. Hence
one gets the so-called Kolmogorov’s backward equation.

Theorem 1.5 (Kolmogorov’s backward equation) Let f ∈ C2
0(R) and

Xt be an Ito diffusion. Then the following statements hold:

(i) Define

(1.4) u(t, x) = Ex [f(Xt)] .

Then u(t, ·) ∈ DA for each t and

∂u

∂t
= Au, t > t0,(1.5)

u(0, x) = f(x).(1.6)

(ii) Otherwise if w(t, x) ∈ C1,2(R × R) is a bounded function solving the
equations (1.5) and (1.6) then u(t, x) = w(t, x) in (1.4).
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This connection is quite amazing because it shows that it is possible to
get the expectation of a stochastic process by solving a partial differential
equation.
If one is interested in a numerical solution of this problem the Kolmogorov
backward equation allows to choose between two ways to reach it. Firstly one
can do a Monte Carlo simulation to calculate the expectation of the stochas-
tic process. Secondly one can use a discretisation scheme to solve the partial
differential equation. Numerical integration schemes as the main interest of
this thesis are described detailed in chapter 3.

With a little more effort we obtain the following useful generalisation of
Kolmogorov’s backward equation:

Theorem 1.6 (Feynman-Kac) Let f ∈ C2
0(R) and assume that q ∈ C(R)

is a lower bounded function. Then the following statements hold for an Ito
diffusion Xt:

(i) Define

(1.7) v(t, x) = Ex

exp

− t∫
0

q(Xs)ds

 f(Xt)

 ,

then for all t > t0:

∂v

∂t
= Av − qv,(1.8)

v(0, x) = f(x).(1.9)

(ii) If there is a bounded function w(t, x) ∈ C1,2(R × R), satisfying (1.8)
and (1.9), then u(t, x) = w(t, x) in equation (1.7).

Remark 1.7 Demanding the boundary condition (1.9) for the end of the
interval [0, T ] instead of the initial point

v(T, x) = f(x)

then the Feynman-Kac theorem holds if one adapts the equation (1.8) as
follows:

−∂v

∂t
= Av − qv.
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Example 1.8 (Heat conduction) The next equation describes a one-di-
mensional heat conduction

∂u

∂t
=

∂2u

∂x2
− qu with a source term qu.

If one likes to apply the Feynman-Kac theorem it is necessary to find the
stochastic process with the appropriate generator

Au =
∂2u

∂x2
.

The Brownian motion has got the right property as one can easily verify.
Hence the solution is given by

u(t, x) = Ex

exp

− t∫
0

q(Bs)ds

 f(Bt)

 = exp(−qt)Ex [f(Bt)] .

As the Brownian motion is N (0, t)-distributed for a fixed t, we get

u(t, x) = (2πt)−1/2 exp(−qt)

∫
R

f(t) exp

(
−(z − x)2

2t

)
dt.

This way we are able to reach a closed solution with respect to an appropriate
boundary condition f .

Another important tool used in stochastic analysis is still missing to solve
the problems in financial mathematics. This is Girsanov´s theorem. It de-
scribes what happens to the coefficients of a stochastic process if the proba-
bility measure is changed. In this case also the Radon-Nikodym (see equation
(A.1)) derivative plays an essential role.

Lemma 1.9 Let ϕ ∈ V satisfy the so-called Novikov condition

(1.10) E

exp

1

2

T∫
0

ϕ2(s, ω)ds

 < ∞

where V is the set of all Ito integrable functions (see def. A.21). Then the
stochastic process

Zt = exp


t∫

0

ϕ(s, ω)dBs −
1

2

t∫
0

ϕ2(s, ω)ds

 with 0 ≤ t ≤ T

is a martingale if ϕ(s, ω) · Zt ∈ V .
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Proof: Applying Ito’s theorem leads to:

dZt = −1

2
ϕ2(s, ω)Ztdt + ϕ(s, ω)ZtdBt +

1

2
ϕ2(s, ω)Zt(dBt)

2

= ϕ(s, ω)ZtdBt.

Now one can use Lemma A.24 which proves the statement. �

Theorem 1.10 (Girsanov) Let Yt be an Ito process represented by the
following differential equation

dYt = a(s, ω)dt + b(s, ω)dBt.

Assume there exist processes σ and γ such that

b(s, ω)σ(s, ω) = a(s, ω)− γ(s, ω),

with σ satisfying the Novikov condition. Setting

Zt = exp

−
t∫

0

σ(s, ω)dBs −
1

2

t∫
0

σ2(s, ω)ds

 ,

this defines a new measure

(1.11) dQ(ω) = ZT (ω)dP (ω),

and

(1.12) B̃t :=

t∫
0

u(s, ω)ds + B(t)

is a Brownian motion w.r.t. Q. The stochastic process Yt now has a new
representation in terms of B̃t:

(1.13) dYt = γ(s, ω)dt + b(s, ω)dB̃t.

The transformation P → Q is called the Girsanov transformation of mea-
sures.

Proof: One can find the proof in chapter 8 of [Øks00]. A more general
version can be found in [HT94, KS88] �

The Girsanov theorem allows to change the measure of the underlying
probability space. This important result has many applications in economics
especially in the context of arbitrage in the financial markets. There is of-
ten the situation that one knows both measures P, Q. Then the martingale
property of the Radon-Nikodym derivative has to be checked to change the
measures in the same manner. The Girsanov theorem completes the most
fundamental results in the theory of Ito diffusions.
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1.2 Analytical positivity

If we model scientific processes with stochastic differential equations we usu-
ally want to get a reproduction of reality which is as detailed as possible.
Thereby the differential equation should correctly describe the interactions.
Furthermore the stochastic process as the solution of the equation must have
the analytical properties given by the model.
A simple example is a stochastic differential equation describing population.
It is quite clear that the stochastic process must be nonnegative. One should
bear in mind this basic fact.
Even in financial mathematics there is a bunch of processes which have to
fulfil certain regularity requirements, e. g., the chart of a stock or an interest
rate must take positive values. The volatility of a stock can be modelled by
a mean-reverting process. In this case as well it does not make sense to allow
negative values.
Our aim is now to develop criteria for the drift and diffusion term of a given
stochastic process. We obtain some results about the boundary behaviour
without necessarily knowing the exact solution. A rather complete descrip-
tion and corresponding proofs can be found in [KT81].

Again an Ito diffusion is the starting-point. Drift and diffusion term are
assumed to be known and continuous.

Definition 1.11 (Hitting time) Let Xt be a stochastic process with initial
value x0. Then the hitting time is given by

Tx =

{
∞ : if X(t) 6= x, for all t

inf{t ≥ 0 , Xt = x} : else

Furthermore we define
T ∗ = min{Ta, Tb}

if a < x0 < b.

It is necessary to describe the generator (1.3) of an Ito diffusion in a slightly
different way to study the problem of analytical positivity. Therefore we
define the following functions

s(x) = exp

− x∫
x0

2a(t)

b2(t)
dt

 ,(1.14)

m(x) =
1

s(x)b2(x)
.(1.15)
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We call s the scale function and m the speed density. Obviously the following
equation holds for s:

s′(x)

s(x)
= −2a(x)

b2(x)
.

Then, following a classical approach, we achieve a new representation for the
generator

Lf(x) =
1

2

(
1

1/(b2(x)s(x))

)
d

dx

[
1

s(x)

df

dx
(x)

]
.

To obtain a more succinct and meaningful expression for L, write dM =
m(x)dx and dS = s(x)dx. In terms of these differentials the operator L is
simply

(1.16) Lf(x) =
1

2

d

dM

[
df

dS
(x)

]
.

To receive the relation between the generator and the boundary behaviour
of the diffusion process we have to consider the next two problems.

Proposition 1.12 (Problem A) Let

u(x) = P{Tb < Ta|X(0) = x} = E0,x
[
1{Tb<Ta}(x)

]
.

This is the probability of reaching the point b before a. The theorem of
Feynman-Kac proofs that this is equivalent to the boundary-value problem

(1.17) 0 = a(x)
du

dx
+

1

2
b2(x)

d2u

dx2
= Lu,

with u(a) = 0 and u(b) = 1. Hereby the solution is given by

u(x) =
S(x)− S(a)

S(b)− S(a)
.

Proof: Having the representation of the generator (1.16) the partial differ-
ential equation (1.17) is equivalent to

1

2

d

dM

[
du

dS
(x)

]
= 0.

Integration leads to

du
dS

= K
⇐⇒ du = KdS

⇐⇒
x∫
a

du =
x∫
a

KdS

⇐⇒ u(x)− u(a) = K(S(x)− S(a)).

The boundary condition u(b) = 1 completes the proof. �
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Proposition 1.13 (Problem B) Let

v(x) = E0,x [T ∗] .

Thus v is the expected time to reach a or b. This can be written as a
boundary-value problem, too:

(1.18) − 1 = a(x)
dv

dx
+

1

2
b2(x)

d2v

dx2
= Lv

with the boundary conditions v(a) = v(b) = 0. The solution is given by

v(x) = 2

u(x)

b∫
x

S[z, b]dM(z) + (1− u(x))

x∫
a

S[a, z]dM(z)

 .

Proof: One obtains this result in an analogous manner as in problem A. For
a detailed proof see [KT81]. �

The results so far enable us to classify the boundary behaviour of a
stochastic process with respect to the functions u and v. This way we can
distinguish between what is attractive and what is attainable.

Definition 1.14 Let

S(0, x] := lim
a→0

S[a, x],(1.19)

Σ(0) :=

x∫
0

S(0, z]dM(z) =

x∫
0

M [z, x]dS(z).(1.20)

Then the boundary 0 is called attractive if

S(0, b] < ∞.

We classify 0 as attainable if

Σ(0) < ∞.

The difference between attractivity and attainability is that the stochastic
process does not necessarily reach the value of an attractive boundary in
finite time. Otherwise if a boundary is attainable it is attractive as well.

Σ(0) < ∞ =⇒ S(0, x] < ∞
S(0, x] = ∞ =⇒ Σ(0) = ∞



CHAPTER 1. DIFFUSION THEORY 12

Remark 1.15 The assertions of the boundary 0 are independent from the
value x. Further it is possible to generalise the boundary behaviour for
arbitrary lower bounds ` ∈ R. One gets the equation (1.20) for Σ(0) by
partial integration as a short calculation shows

x∫
0

S(0, z]dM(z) =

x∫
0

(S(z)− S(0)) m(z)dz

= S(x)M(x)− S(0)M(0)

−
x∫

0

s(z)M(z)dz −
x∫

0

S(0)m(z)dz

= S(x)M(x)− S(0)M(x)−
x∫

0

s(z)M(z)dz

=

x∫
0

s(z)M(x)− s(z)M(z)dz

=

x∫
0

M [z, x]dS(z).

Now we can analyse the positivity of a diffusion process in an elementary
way by just using drift and diffusion term.
The following examples are presented particularly with regard to modelling
in financial mathematics. The technique used above can be applied to other
problems as well.

Application in mathematical finance

The easiest example is a geometric Brownian motion. In this case it is not
necessary to prove the positivity because it can be directly deduced from the
exact solution.

Lemma 1.16 Let Xt be a geometric Brownian motion

(1.21) dXt = µXtdt + σXtdW

with µ, σ ∈ R+. Then the boundary 0 is not attainable.
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Proof: With a(x) = µx and b(x) = σx we get

s(x) = exp

− x∫
x0

2µz

σ2z2
dz


= exp

(
−2µ

σ2
log(x)

)
= x−

2µ

σ2 .

Therefore
S(0, x] = ∞ if µ > σ2/2 and S(0, x] < ∞ else.

So far we have not got a clear indication of the boundary 0. Thus we have
to study the behaviour of Σ(0). Let λ = −2µ

σ2 then

Σ(0) =

x∫
0

 y∫
0

s(z)dz

m(y)dy

=

x∫
0

1

1− λ
y1−λ yλ

σ2y2
dy

=

x∫
0

C
1

y
dy

= ∞.

As demonstrated above the stochastic process never reaches 0. Hence it is
strictly positive. �

In the next chapter we will use two further stochastic differential equations
for modelling in financial mathematics. Already at this point we present their
analytical properties.

Proposition 1.17 The stochastic process Xt given by

(1.22) dXt = (a + bXt)dW

where a ∈ R and b ∈ R+ has the following characteristics:

• Xt ∈ [−a/b,∞]

• −a/b is an attractive boundary but not attainable.
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Proof: The calculation can be done in an analogous way as for the geometric
Brownian motion. �

Proposition 1.18 Now let Xt be given by

(1.23) dXt = Xα
t dW , α ≥ 0.

Then Xt possesses the following properties

• 0 < α < 1 ⇒ 0 is an attainable boundary,

• 1 ≥ α ⇒ 0 is an unattainable boundary,

• ∀α ∈ R+
0 0 is an attractive boundary.

Proof: One can verify these assertions by basic calculation. �

Mean-reverting

A mean-reverting process is one of the most often used stochastic differen-
tial equations in scientific applications. The conception is that the mean-
reverting process varies about a mean often called equilibrium. For example
the volatility in financial applications can be described by such a process. In
this case the positivity of the stochastic process is of much interest, too.

Definition 1.19 The class of mean-reverting processes is the solution of the
following differential equation:

dXt = (α(t)− β(t)Xt)dt + σ(t)Xp
t dW.

where α, β, σ : R −→ R+ are continuous functions and p ∈ R+.

The mean-reverting processes can also be examined by the methods we
developed above.

Lemma 1.20 Let the stochastic process Xt be given by the next stochastic
differential equation with α, β, σ ∈ R+:

(1.24) dXt = (α− βXt)dt + σX
1
2
t dW.

Then the boundary 0 is not attractive if α > σ2/2.
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Proof: We start with computing the function s

s(x) = exp

− x∫
x0

2(α− βz)

σ2z
dz


= exp

(
− log(x)

2α

σ2
+ x

2β

σ2

)
= x−

2α
σ2 exp

(
x

2β

σ2

)
.

This calculation leads to the following result for measure S

S(0, x] = ∞ if α > σ2/2 and S(0, x] < ∞ else.

Accordingly we must only check the case where α ≤ σ2/2 (to simplify

notation let λ = 2α
σ2 ):

Σ(0) =

x∫
0

 y∫
0

s(z)dz

m(y)dy

=

x∫
0

Cy1−λ yλ

σ2y
dy

=

x∫
0

C/σ2dy

< ∞.

Thus the lower bound 0 is always attainable if α ≤ σ2/2. �

Proposition 1.21 The stochastic process given by

(1.25) dXt = (α− βXt)dt + σXp
t dW

with α, β, σ, p ∈ R+, has an unattractive bound 0 if

1. p = 1
2

and α > σ2/2,

2. p > 1
2
.
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Proof: The first assertion follows from Lemma 1.20. To prove the second
one, we must calculate the function s:

s(y) = exp

(
− 2α

σ2(1− 2p)
y1−2p

)
exp

(
2β

σ2(2− 2p)
y2−2p

)
.

The second term is bounded below on [0, x] by a constant C. However a
x0 > 0 exists so that

exp

(
− 2α

σ2(1− 2p)
x1−2p

0

)
= x−1

0 .

Hence we get for an arbitrary x > x0

S(0, x] > S(0, x0]

=

x0∫
0

C exp

(
− 2α

σ2(1− 2p)
y1−2p

)
dy

>

x0∫
0

y−1dy

= ∞.

We notice that in the case p > 1
2

the boundary 0 is not even attractive. �

To sum up we could clear the problem of analytical positivity for a class of
stochastic processes which are of great importance in mathematical finance.
That leads to the question if there are numerical schemes which preserve this
regularity property.
We will deal with this problem in chapter 4. Doing so we will mainly con-
centrate on the processes (1.21),(1.22), (1.23),(1.24) and (1.25).



CHAPTER II

Mathematical modelling of interest rates

derivatives

In finance there is a wide range of different derivatives to hedge the risk of
losing money. A put on a stock, e. g., can protect portfolios against falling
stock prices. In consideration of the fact that a stock option is the easiest
example, appendix B explains this concept more detailed. Not only stocks
are exposed to random fluctuations but interest rates as well. The interest
rate underlying the European market is the Euribor (see fig. 2.1).

Figure 2.1: Euribor chart from the year 2002; data provided by www.euribor.org

17
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The first question we have to deal with is how to trade interest rates. As
interest rates are not directly tradable, the market uses zero-coupon bonds
B(t, T ) as a substitute:

(2.1) B(t, T ) = price at time t paying 1 at time T .

The different dates of expiration T define the so-called maturity structure

(2.2) 0 = T0 < T1 < ... < TN < TN+1 = T ∗.

Usually there are 3-months periods between the different dates of expiration.
Knowing the price of a zero-coupon bond a further description can be given.

Definition 2.1 (Libor forward rates) The forward rate Fk(t) is the arbi-
trage-free interest rate in the time period from Tk to Tk+1

1 + δkFk(t) =
B(t, Tk)

B(t, Tk+1)
with δk = Tk+1 − Tk.

Obviously this leads to the following expression for Fk(t)

Fk(t) =
1

δk

(
B(t, Tk)

B(t, Tk+1)
− 1

)
.

Therefore the bond prices determine the interest curve and vice versa, the
forward rates describe the forward curve as shown in figure 2.2.

The prices of zero-coupon bonds contain certain expectations about the
future development of interest rates. As in the equity market, see appendix
B, we want to find a stochastic model covering these expectations.

2.1 Libor market model

There are options on forward rates to hedge against the fluctuations of inter-
est rates. Considering the stock options call and put as the basic derivatives
(see again app. B), the equivalents in the interest rate market are caplets
(call) and floorlets (put).

Definition 2.2 (Caplet) A caplet guarantees a payoff at Tk to the holder
if the forward rate F is higher than the strike K

C(Tk) = δkB(0, Tk+1)(F (Tk)−K)+.
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Figure 2.2: Interest curve and forward curve, prices of zero-coupon bonds denoted in
Euro at 2004/03/30, data provided by Dr. Thilo Roßberg ABN AMRO London.

Analogously the payoff function f of a floorlet is defined by

F (Tk) = δkB(0, Tk+1)(K − F (Tk))
+.

So we can use a caplet as a hedging tool against interest rates fluctuations
at a fixed date. If we are interested in hedging at every moment Ti we need
a combination of caplets. Such a combination is called cap.
Considering the modelling of forward rates we have to deal with two prob-
lems. On the one hand we have to describe an arbitrage-free market. On the
other hand the model has to fit the market prices.
Similar to stock options we observe that the relative caplet prices are dif-
ferent depending on the strike K. Likewise we find that there is a variation
which depends on maturity. Exactly this problem will be of further interest
later on.
The first aim is setting up an arbitrage-free model. To do so we need to
define an appropriate measure.

Definition 2.3 (Forward measure) The so-called forward measure QTk
is

the measure associated to the zero-coupon bond B(t, Tk).
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One gets an arbitrage-free market if the forward rate Fk fulfils the following
stochastic differential equation.

(2.3) dFk(t) = σk(t)Fk(t)dBTk+1 with t < Tk

where BTk+1 is a Brownian motion with regard to the measure QTk+1
.

Using this definition one gets N stochastic differential equations modelling
N different forward rates from t = 0 to TN . If one only has to price caplets
or caps it is not necessary to construct a common measure for all forward
rates. But determining the value of a more complex option requires the same
measure for all forward rates.

First we analyse the stochastic differential equation for Fk changing the
measure from QTk+1

to QTk
. We consider the Radon-Nikodym derivative Z

(see equation (A.1))

Z(t) =
dQTk

dQTk+1

=
B(t, Tk)/B(0, Tk)

B(t, Tk+1)/B(0, Tk+1)

=
B(t, Tk)/B(t, Tk+1)

B(0, Tk)/B(0, Tk+1)

=
1 + δkFk(t)

1 + δkFk(0)
.

Differentiating Z leads to

dZ(t) =
δkdFk(t)

1 + δkFk(0)
=

δkFk(t)

1 + δkFk(0)
σk(t)dBTk+1 .

It follows that Z is a martingale and that

dZ(t)

Z(t)
=

δkσk(t)Fk(t)

1 + δkFk(t)︸ ︷︷ ︸
α(t)

dBTk+1 .

Consequently a geometric Brownian motion describes Z. Obviously the so-
lution is

Zt = exp


t∫

0

α(s)dBTk+1
s − 1

2

t∫
0

α2(s)ds

 .
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Remembering the Girsanov theorem and particularly the equations (1.11)
and (1.12)

(2.4) dBTk = − δkFk(t)

1 + δkFk(0)
σk(t)dt + dBTk+1

holds under the new measure QTk
.

A suitable common measure is the so-called terminal measure QTN+1
. By

using equation (2.4) for the different forward rates we get

dFk(t)

Fk(t)
= σk(t)

(
dBTk+1 − dBTN+1

)
+ σk(t)dBTN+1

= σk(t)
N∑

i=k+1

(
dBTi − dBTi+1

)
+ σk(t)dBTN+1

= −σk(t)
N∑

i=k+1

δiFi(t)

1 + δiFi(0)
σi(t)dt + σk(t)dBTN+1 .

Analogous calculation permits to change into any other forward measure.
The Libor market model allows a closed solution for a single caplet. For that
purpose we describe the price as a conditional expectation. Therefore let
Fk(t) be the current forward rate

(2.5) C(t) = δkB(t, Tk+1)E
Fk(t),QTk+1

[
(Fk(Tk)−K)+

]
.

As Fk is lognormal-distributed, we can apply the Black-Scholes formula (see
app. B and particularly example B.4). This leads to the caplet price C

(2.6) C(t) = δkB(t, Tk+1)
[
Fk(t)Φ

(
d(t)

)
−KΦ

(
d(t)− Vk(t)

)]
with the auxiliary functions Vk and d

Vk(t) =

Tk∫
t

σk(s)ds,

d(t) =
log(Fk(t)

K
) +

V 2
k (t)

2

Vk(t)
.

In this case Φ is the cumulative standard normal distribution (B.7).

Additionally the Black-Scholes formula allows to calculate the volatility
σ if the market price of the caplet is known. Volatility which is calculated
like this is named implicit volatility (see also appendix B).
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Figure 2.3: Volatility surface, prices of caplets on Euro-forwards, 2004/03/30, provided
by Dr.Thilo Roßberg, ABN AMRO London.

Thus it is necessary to extend the caplet model to fit with the observed
market prices.

2.2 Extended Libor market model

In this section different approaches to include the market observation will
be discussed. For the first time we cannot achieve closed formulas. Thus
numerics comes into the game. The model extensions can be classified as
follows

1. Displaced Diffusion (DD),

2. Constant Elasticity of Variance (CEV),

3. Stochastic Volatility.

The displaced diffusion and the constant elasticity of variance are two possi-
bilities to face the problem of non-lognormal distributed forward rates. The
stochastic volatility can be considered as an additional idea. It does not take
too much effort to combine the different extensions. Considering the method
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of stochastic volatility, a stochastic process Vt is added to the diffusion term.
By this principle it becomes possible to adapt the implied volatility surface
to the market data.

2.2.1 Displaced Diffusion

Definition 2.4 (Displaced diffusion (DD)) The forward rates under the
forward measure QTk+1

are given by

(2.7) dFk(t) = σk,DD(t) (Fk(t) + mk) dBTk+1 with t < Tk.

Using Girsanov’s theorem one can change the measure QTk+1
to QTk

by

Z(t) =
B(t, Tk)/B(0, Tk)

B(t, Tk+1)/B(0, Tk+1)
=

1 + δkFk(t)

1 + δkFk(0)

dZ(t) =
δk(Fk(t) + mk)

1 + δkFk(0)
σk,DD(t)dBTk+1 .

This leads to the next equation under the new measure QTk
:

dBTk = −δk(Fk(t) + mk)

1 + δkFk(0)
σk,DD(t)dt + dBTk+1 .

It is reasonable to choose the terminal measure as a common measure for all
forward rates:

dFk(t)

Fk(t) + mk

= σk,DD(t)
(
dBTk+1 − dBTN+1

)
+ σk,DD(t)dBTN+1

= σk,DD(t)
N∑

i=k+1

(
dBTi − dBTi+1

)
+ σk,DD(t)dBTN+1

= −σk,DD(t)
N∑

i=k+1

δi(Fi(t) + mi)

1 + δiFi(0)
σi,DD(t)dt + σk,DD(t)dBTN+1 .

To calculate the price of a caplet we ascertain that F̂k(t) = Fk(t) + mk is
lognormal distributed. With the notation K̂ = K +mk and the two auxiliary
functions Vk and d

Vk(t) =

Tk∫
t

σk(s)ds,

d(t) =
log( F̂k(t)

K̂
) +

V 2
k (t)

2

Vk(t)
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we can apply the Black-Scholes formula:

(2.8) C(t) = δkB(t, Tk+1)
[
F̂k(t)Φ

(
d(t)

)
− K̂Φ

(
d(t)− Vk(t)

)]
.

Depending on the parameter mk the model of displaced diffusion provides
a skew in the implied volatility surface. This behaviour is exemplified in the
figures 2.4 and 2.5.

Figure 2.4: Implied volatility surface: Fk(0) = 0.06, σk = 0.2, Tk = 1, 2, ..., 10,
K = 0.04, ..., 0.08 and mk = −0.02.

Evidently the parameter mk < 0 causes the caplet prices to increase with
the value of the strike K. On the other hand choosing mk > 0 the skew in
the surface is in the opposite direction as we can see in figure 2.5.

Investigation into the analytical behaviour of displaced diffusion shows
that the forward rates live on the interval [−m,∞) ⊂ R. This assertion has
already been made in the first chapter (see equation (1.22)). This means
that the stochastic process can reach negative values if m is greater zero.
Looking ahead to the problem of numerical simulation we have to find an
integration scheme which keeps the numerical values in the interval [−m,∞).
But the other extensions of the Libor market model are confronted with
similar problem, too.
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Figure 2.5: Implied volatility surface: Fk(0) = 0.06 , σk = 0.15 , Tk = 1, 2, ..., 10 ,
K = 0.04, ..., 0.08 and mk = 0.02.

2.2.2 Constant Elasticity of Variance

Definition 2.5 (Constant Elasticity of Variance (CEV)) In this model
the forward rates are given under the forward measure QTk+1

by

(2.9) dFk(t) = σk,CEV (t)Fk(t)
αkdBTk+1 with t < Tk.

Girsanov’s theorem defines also in this case the change from the measure
QTk+1

to QTk
:

Z(t) =
B(t, Tk)/B(0, Tk)

B(t, Tk+1)/B(0, Tk+1)
=

1 + δkFk(t)

1 + δkFk(0)
,

dZ(t) =
δkFk(t)

αk

1 + δkFk(0)
σk,CEV (t)dBTk+1 .

Under the new measure QTk
we obtain:

dBTk = − δkFk(t)
αk

1 + δkFk(0)
σk,CEV (t)dt + dBTk+1 .
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The same argumentation leads to the forward rates under the terminal mea-
sure:

dFk(t)

Fk(t)αk
= σk,CEV (t)

(
dBTk+1 − dBTN+1

)
+ σk,CEV (t)dBTN+1

= σk,CEV (t)
N∑

i=k+1

(
dBTi − dBTi+1

)
+ σk,CEV (t)dBTN+1

= −σk,CEV (t)
N∑

i=k+1

δiFi(t)
αi

1 + δiFi(0)
σi,CEV (t)dt + σk,CEV (t)dBTN+1 .

The CEV provides closed formulas for the caplet prices as well even
though it is more complicated than in the case of displaced diffusion. We
define the parameter d and Vk as usual

Vk =

Tk∫
t

σk(s)ds,

d(t) =
log(Fk(t)

K
) +

V 2
k (t)

2

Vk(t)
.

Additionally we need three auxiliary variables a, b, c:

a =
K2(1−α)

(1− α)2Vk(t)
, b =

1

1− α
, c =

Fk(t)
2(1−α)

(1− α)2Vk(t)
.

This culminates in the following representation of the caplet prices in depen-
dence of α:

Ck(t) = δkB(t, Tk+1)


[Fk(t)(1− χ2(a, b + 2, c))−Kχ2(c, b, a)] :0 < α < 1[
Fk(t)Φ

(
d(t)

)
−KΦ

(
d(t)− Vk(t)

)]
:α = 1

[Fk(t)(1− χ2(c,−b, a))−Kχ2(a, 2− b, c)] :α > 1.

Remark 2.6 Here χ2(x, y, z) is the non-central chi-square distribution with
three grades of freedom. A complete proof can be found in [JK81, Sch89].

The parameter α enables us to model a skew into the implied volatility sur-
face and the quantity of α determines the direction as the next two examples
illustrate.
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Figure 2.6: Implied volatility surface: Fk(0) = 0.06, σk = 0.04899, Tk = 1, 2, ..., 10,
K = 0.04, ..., 0.08 and αk = 0.5.

In this case we see a downward trend with increasing strike. In contrast
α > 1 causes another direction in the volatility surface, shown in figure 2.7.

From the analytical point of view the CEV model is superior to the DD
model because it averts negative forward rates (see equation (1.23)). This
advantage is reduced by the fact that 0 is an attainable bound if α < 1. Again
the numerical simulation has to take this fact into account. In the end of this
chapter a short introduction to stochastic volatility will be given. The results
presented below mainly refer to the article ”Extended Libor market model
with Stochastic volatility” by Andersen and Brotherton-Ratcliffe [ABR01].
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Figure 2.7: Implied volatility surface: Fk(0) = 0.06, σk = 0.8161, Tk =
1, 2, ..., 10, K = 0.04, ..., 0.08 and αk = 1.5
.

2.2.3 Stochastic Volatility

Definition 2.7 (Stochastic volatility) The Libor market model with sto-
chastic volatility defines the forward rates as follows

(2.10) dFk(t) = σk(t)
√

V (t)ϕ(Fk(t))dBTk+1 with t < Tk.

The function ϕ can be given either by the displaced diffusion or as con-
stant elasticity of variance. The volatility V is described by the stochastic
differential equation

(2.11) dV (t) = κ(θ − V (t))dt + εV (t)βdZ.

Here Z is a Brownian motion and β ∈ (0.5, 1].

Using stochastic volatility makes closed pricing formulas impossible. The
best we can get is an appropriate approximation. A detailed description
will not be given in this thesis but an intensive study of this topic can be
found in [ABR01]. Indeed the equation for stochastic volatility is interesting
for another reason too. Yet in section 1.2 it became clear that a mean-
reverting process only takes positive values under certain conditions. Because
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of the absence of closed formulas numerical simulation becomes essential. The
maintaining of numerical positivity is an important requirement to get exact
approximations. In chapter 4 we will see that it is possible to find a numerical
integration scheme providing this property. Numerical simulation of caplet
prices is a focal point in chapter 5. The next picture gives a first impression
of the impact of stochastic volatility on the implied volatility surface.

Figure 2.8: Implied volatility surface: Fk(0) = 0.06, σk = 0.2, Tk = 1, 2, ..., 10,
K = 0.04, ..., 0.08, V (0) = κ = θ = 1, ε = 1.4, β = 0.75, ∆t = 0.25, Monte Carlo
simulation with 5000000 paths.



CHAPTER III

Numerical integration of stochastic

differential equations

In general there is no closed solution of a stochastic differential equation.
Consequently the Black-Scholes formula B.4 is rather an exception as the
underlying process is described by a geometric brownian motion.
Thus, having a more complex stochastic differential equation, it is necessary
to use numerical integration schemes to approximate the solution. We know
that a stochastic process possesses a density p at each time t. To get a
numerical approximation for this density a Monte-Carlo simulation can be
done. Schematically one must consider two aspects

1. Discretisation (of the SDE),

2. Simulation (of N paths).

First it is necessary to discretise the stochastic differential equation. This
point is strongly connected to stochastic Taylor expansion. Secondly a finite
number of paths must be simulated to get an approximation of the density.

But both points contain sources of error so that we have to be careful to
make sure that the approximated solution agrees with the analytical one. It
is quite clear that the number of paths directly corresponds with the accuracy
and the variance of the approach: ”Increase the number of paths to decrease
the oscillation of the error.” Hence it is necessary to simulate a suitable
number of paths to reach a sensible numerical solution. In the following we
assume this point as settled and we will pay attention to the other source of
error: the discretisation of the differential equation.

30
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To deal with this problem it is necessary to develop stochastic Taylor
expansion as the main tool to study discretisation error. For that reason the
usual concept of multiindices is introduced.

3.1 Stochastic Taylor expansion

Starting-point is an arbitrary Ito process Xt

(3.1) dX = a(t,X)dt + b(t,X)dW with Xt0 = x0.

To motivate the stochastic Taylor expansion we start with the easiest exam-
ple. For this purpose let Xt be an Ito diffusion with its integral representation

Xt = X0 +

t∫
0

a(Xs)ds +

t∫
0

b(Xs)dWs.

Applying Ito’s formula to a function f ∈ C2
0(R) leads to

f(Xt) = f(X0) +

t∫
0

(
a(Xs)

∂

∂x
f(Xs) +

1

2
b(Xs)

2 ∂2

∂x2
f(Xs)

)
ds

+

t∫
0

b(Xs)
∂

∂x
f(Xs)dWs.

To simplify the notation we introduce the following operators

L0 = a
∂

∂x
+

1

2
b2 ∂2

∂x2
and L1 = b

∂

∂x
.

Choosing a = f and b = f

Xt = X0 +

t∫
0

a(X0) +

s∫
0

L0a(Xu)du +

s∫
0

L1a(Xu)dWu

 ds

+

t∫
0

b(X0) +

s∫
0

L0b(Xu)du +

s∫
0

L1b(Xu)dWu

 dWs

= X0 +a(X0)

t∫
0

ds + b(X0)

t∫
0

dWs + R.
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The remainder R possesses only terms of higher order

R =

t∫
0

s∫
0

L0a(Xu)duds +

t∫
0

s∫
0

L1a(Xu)dWuds

+

t∫
0

s∫
0

L0b(Xu)dudWs +

t∫
0

s∫
0

L1b(Xu)dWudWs.

To point out the connection of the remainder and the stochastic Taylor ex-
pansion it is necessary to declare some further notations.

Definition 3.1 (Multiindices I) A multiindex is a vector α with entries
ji ∈ {0, 1, ..., d}

(3.2) α = (j1, ..., jm).

The length of a multiindex is defined by

(3.3) `(α) = `((j1, ..., jm)) = m.

Additionally we write α = {ν} for the vector of length 0. Finally we notate
the set of all multiindices with

(3.4) M := {(j1, ..., jm) for all m = 0, 1, ...}.

Example 3.2 Let α = (0, 0, 1, 2, 4) then `(α) = 5. Further let −α be the
multiindex obtained by deleting the first component of α. Thus−(0, 0, 1, 2, 4) =
(0, 1, 2, 4) and by the same token (0, 0, 1, 2, 4)− = (0, 0, 1, 2). The concate-
nation of multiindices is notated by ∗. Therefore (0, 1) ∗ (2, 3) = (0, 1, 2, 3).

With this notation it is possible to describe the integration in the Taylor
expansion in a particularly simple way.

Definition 3.3 The multiple Ito integral is recursively defined by

(3.5) Iα[f(·)]ρ,τ =


f(τ) : ` = 0
τ∫
ρ

Iα−f [(·)]ρ,τds : ` ≥ 1 and j` = 0

τ∫
ρ

Iα−f [(·)]ρ,τdW j`
s : ` ≥ 1 and j` ≥ 1

with α = (j1, ..., j`).
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Example 3.4 Let W 1, W 2 and W 3 be independent Brownian motions

I(0,0)[g(·)] =

∫∫
g(s1)ds1ds2,

I(1,1,0)[g(·)] =

∫∫∫
g(s1)dWs1dWs2ds3,

I(0,1,2,3)[g(·)] =

∫∫∫∫
g(s1)ds1dW 1

s2
dW 2

s3
dW 3

s4
.

Summing up these facts we can write the first step in the stochastic Taylor
expansion as follows

(3.6) Xt = X0 + a(X0)I(0)[1]0,t + b(X0)I(1)[1]0,t + R.

The generalisation of this concept needs the introduction of more notations.

Definition 3.5 A nonempty set A ⊂M is called hierarchical if:

`(α)
α∈A

< ∞,(3.7)

−α ∈ A for all α ∈ A \ {ν}.(3.8)

The remainder set of A is given by

(3.9) B(A) = {α ∈M \A : −α ∈ A}.

Example 3.6 The next two sets are hierarchical as one can easily verify

1. A = {{ν}, (0), (1)},

2. A = {{ν}, (0), (1), (11)}

with the corresponding remainder sets

1. B(A) = {(00), (10), (01), (11)},

2. B(A) = {(00), (10), (01), (11), (011), (111)}.

Looking at the first example we ascertain that the indices agree with the first
step of the stochastic Taylor expansion. This principle can be generalised.
To do so it is necessary to analyse the relation between different Ito integrals.
For that purpose let

Iα,t = Iα[1]0,t,

Iα,∆ = Iα[1]ρ,τ with ∆ = τ − ρ.

The next proposition can be found in [KP92].



CHAPTER 3. NUMERICS OF SDES 34

Proposition 3.7 Let j1, ..., jm ∈ {1, ..., d} and α = (j1, ..., jm) ∈ M where
m ≥ 1. Then the next equation holds:

I(j),tIα,t =
m∑

i=0

I(j1,...,ji,j,ji+1,...,jm),t +
m∑

i=0
ji=j 6=0

I(j1,...,ji−1,0,ji+1,...,jm),t.

Remark 3.8 This result will be needed to prove the convergence of balanced
stochastic integration schemes. Before presenting some more examples we
will analyse a special case of this proposition.

Corollary 3.9 Let α = (j1, ..., jm) with j1 = j2 = ... = jm = j where m > 2.
Then

(3.10) Iα,t =

{
1

m!
tm : j = 0,

1
m

(
I(j),tIα−,t − I(0),tI(α−)−,t

)
: j 6= 0.

Proof: The case j = 0 is obvious and the Proposition 3.7 shows that

I(0),tI(α−)−,t =
m−2∑
i=0

I(j1,...,ji,0,ji+1,...,jm−2),t,

I(j),tIα−,t = mIα,t +
m−1∑
i=1

I(j1,...ji−1,0,ji+1,...,jm−1),t.

Renumbering and differentiating proves the statement. �

Example 3.10 The following examples are selected especially with respect
to further requirements:

I(11),t =
1

2

(
I2
(1),t − I(0),t

)
,

I(1),tI(01),t = I(101),t + 2I(011),t + I(00),t,

I(1),tI(11),t = 3I(111),t + I(10),t + I(01),t,

I(11),tI(11),t =
1

2

(
I2
(1),t − I(0),t

)
I(11),t,

= 6I(1111),t + 2
(
I(011),t + I(101),t + I(110),t

)
+ I(00),t.

There is only one last tool missing to represent the stochastic Taylor
expansion. Already at the beginning of this chapter we introduced the oper-
ators L0 and L1.



CHAPTER 3. NUMERICS OF SDES 35

This principle can be transferred to the multidimensional case

L0 =
∂

∂t
+

d∑
k=1

ak
∂

∂xk

+
1

2

d∑
k,`=1

m∑
j=1

bk,jb`,j
∂2

∂xk∂x`

.

For j 6= 0 we get the following operator

Lj =
d∑

k=1

bk,j
∂

∂xk

.

Definition 3.11 The so-called Ito coefficient functions are recursively de-
fined by with α = (j1, ..., jm)

(3.11) fα =

{
f ` = 0,

Lj1f−α ` ≥ 1.

Example 3.12 Later on we will examine numerical integration schemes and
therefore we will always choose f(t, x) = x in the stochastic Taylor expansion:

f(0) = a , f(1) = b and f(11) = bb′.

Applying all these notations we are able to set up the general stochastic
Taylor expansion.

Theorem 3.13 (Stochastic Taylor expansion) Let Xt be a stochastic
process given by the equation (3.1) and let A be a hierarchical set. Then the
following statement holds

(3.12) f(τ,Xτ ) =
∑
α∈A

Iα[fα(ρ, Xρ)]ρ,τ +
∑

α∈B(A)

Iα[fα(·, X·)]ρ,τ .

Proof: See [KP92]. �

In the next section this theorem is particularly interesting for the con-
struction of suitable integration schemes with an appropriate error of the
remainder. Before continuing some more definitions are necessary.

Definition 3.14 (Multiindices II) Let α be a given multiindex. Then
α+ is defined by leaving out all zero components. Further let ki(α) be the
distance between the i-th and (i + 1)-th nonzero entries.
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Example 3.15 The next two examples illustrate this

1. α = (0, 1, 2, 0) =⇒ α+ = (1, 2) and k0 = 1, k1 = 0, k2 = 1

2. α = (2, 3) =⇒ α+ = (2, 3) and k0 = 0, k1 = 0, k2 = 0.

Especially the moments of Ito integrals will play essential roles later on.
Therefore we define

(3.13) w(α, β) = `(α+) +

`(α+)∑
i=0

(ki(α) + ki(β)) .

This section will be completed by presenting two main results of the approx-
imation behaviour of Ito integrals.

Theorem 3.16 Let C1 be a suitable constant. The expectation of an Ito
integral is

(3.14) E [Iα,∆|Fρ] ≤

{
0 : if `(α) 6= `(α+)

C1∆
`(α) : else.

Theorem 3.17 In the latter case (·, ·) is the usual Euclidean scalar product.
Then we get with an appropriate constant C2:

(3.15) E [(Iα,∆, Iβ,∆)|Fρ] ≤

{
0 : α+ 6= β+

C2∆
w(α,β) : else.

Proof: See again [KP92] especially for a detailed description of C1 and C2. �

According to this theoretical introduction we now have the necessary tools
to develop stochastic integration schemes. Particularly in cooperation with
the theorem of Milstein the characterisation of stochastic Taylor expansion
by multiindices is a useful tool. Now it is possible to prove the convergence
of an integration scheme with only little effort.

3.2 Basic numerical integration schemes

The aim of this section is to develop numerical integration schemes. First
of all we will present the explicit Euler and Milstein methods which can
be directly deduced from the stochastic Taylor expansion. But we will also
present implicit methods especially with regard to the problem of numerical



CHAPTER 3. NUMERICS OF SDES 37

positivity. The implicit schemes can be generalised further: These are the
balanced methods.

The most familiar stochastic integration scheme is the Euler scheme.

Definition 3.18 (Euler method) The stochastic Euler method for solving
equation (3.1) is defined by:

(3.16) Xn+1 = Xn + a(tn, Xn)∆tn + b(tn, Xn)∆W.

Thereby ∆tn := tn+1 − tn is called the stepsize and ∆W is a N (0, ∆tn)
distributed random variable.

Hence the Euler scheme corresponds with the hierarchical set

(3.17) A = {(0), (1)}.

Considering the remainder set B(A) one can observe that for all α, β ∈ B(A)
and for suitable constants C1, C2 the next inequalities hold:

E
[
Iα,∆tn

|Ftn

]
≤ C1∆

p1
tn with p1 ≥ 2,(

E
[
(Iα,∆tn

, Iβ,∆tn
)|Ftn

])1/2 ≤ C2∆
p2
tn with p2 ≥ 1.

This leads to the question if there is in general a connection between the
values of p1 and p2. To give an answer it is necessary to define what the
convergence of a stochastic integration scheme is.

Definition 3.19 (Strong convergence) A numerical integration scheme
Xn converges strongly with order γ1 towards the exact solution YTN

if

(3.18) lim
∆t→0

E
[∣∣YTN

−XN

∣∣|F0

]
≤ C∆γ1

t .

In this inequality ∆t := max
i=1,...N−1

{∆ti} and TN is an arbitrary value in [0, T ]

and independent of the constant C.

Definition 3.20 (Weak convergence) Again Xn is a numerical integra-
tion scheme and YTN

the exact solution. Then the scheme has the weak
order of convergence γ2 if

(3.19) lim
∆t→0

∣∣E [YTN
|F0]− E [XN |F0]

∣∣ ≤ C∆γ2
t

with ∆t, TN and C as above.
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But how can we prove the convergence order of a stochastic integration
scheme? As in the deterministic case the Taylor expansion is the essential
key. A rather simple method is using hierarchical sets A. These hierarchical
sets enable us to make some error estimations. Doing this the Theorems 3.16
and 3.17 turn out to be crucial to calculate the local convergence order.

In the deterministic case we call this behaviour the consistence of the
numerical scheme. But in the case of stochastic processes consistence is
not sufficient to guarantee convergence, either. Here the first and second
moments of the local error must converge. The Milstein theorem illustrates
this interplay between local and global properties. Before we set out to
explain this properly we have to say a few words about local convergence.

Definition 3.21 The local mean error is the error of the one-step discreti-
sation

(3.20)
∣∣∣E [Y τn,Yn

τn+1
−Xn+1|Fτn

] ∣∣∣ ≤ C∆p
tn

where Y τn,Xn
τn+1

is the value of the exact solution at time τn+1 starting at τn

with the value Xn. On the other hand Xn+1 is the (n + 1)-th step of the
integration scheme. It is necessary to take the conditional expectation to be
independent of the behaviour of the path before.

Theorem 3.22 (Milstein) Let Xn be a numerical integration scheme for
the solution of the stochastic differential equation (3.1). The value of the
exact solution at τn is Yτn . Assume that the first two moments of the one-step
discretisation for all N = 1, 2.. and all n = 0, ..., N − 1 fulfil the inequalities

(3.21)
∣∣∣E [Y τn,Xn

τn+1
−Xn+1|Fτn

] ∣∣∣ ≤ (1 + |Yn|2
)1/2

∆p1
tn

and

(3.22)
(
E
[
|Y τn,Xn

τn+1
−Xn+1|2|Fτn

] )1/2

≤
(
1 + |Yn|2

)1/2
∆p2

tn

with p2 ≥ 1
2

and p1 ≥ p2+
1
2
. Then the global error satisfies for all k = 0, ..., N

(3.23)
(
E
[
|Y 0,X0

τk
−Xk|2|F0

] )1/2

≤
(
1 + |X0|2

)1/2
∆

p2− 1
2

t .

So the integration scheme has a strong convergence order of γ1 = p2 − 1
2
.
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Proof: One can find the proof in [Mil95]. �

In the last section we already discussed how it is possible to describe
the stochastic Taylor expansion with hierarchical sets. In particular we get
estimations for the remainder R. Therewith it is possible to construct a
stochastic integration scheme with an arbitrary strong order of convergence
γ. Hence it is only necessary to find the appropriate hierarchical sets which
provide a proper local convergence error.

Definition 3.23 (Strong Ito-Taylor multiindices) Let the following hi-
erarchical sets be defined for γ = 0.5, 1, 1.5, ...

(3.24) Aγ = {α ∈M : `(α) + n(α) ≤ 2γ or `(α) = n(α) = γ + 0.5}.

Example 3.24 The first hierarchical sets are presented below to give a short
illustration

A0.5 = {ν, (0), (1)},
A1.0 = {ν, (0), (1), (1, 1)},
A1.5 = {ν, (0), (1), (1, 1), (0, 1), (1, 0), (0, 0), (1, 1, 1)}.

Lemma 3.25 The remainder set for Aγ is:

B(Aγ) = {α ∈M : n(α) + `(α) ∈ [2ν + 1, 2ν + 2] or n(α) = `(α) = ν + 1.5}.

Proof: Let β = −α ∈ A. Then we have to check that α = (j) ∗ β ∈ B(A).
In the most simple case n(β) 6= `(β), we can directly conclude that

n(α) + `(α) = n(β) + `(β) + 2 ≤ 2ν + 2 for j = (0),

n(α) + `(α) = n(β) + `(β) + 1 ≤ 2ν + 1 for j 6= (0).

In the case that n(β) = `(β) we have to differentiate further. If n(β) =
`(β) = ν + 0.5 we get:

n(α) = `(α) = n(β) + 1 = ν + 1.5 for j = (0),

n(α) + `(α) = n(β) + `(β) + 1 ≤ 2ν + 2 for j 6= (0),

otherwise n(β) = `(β) ≤ ν. Therefore the result is:

n(α) = `(α) = n(β) + 1 = ν + 1 ≤ 2ν + 2 for j = (0),

n(α) + `(α) = n(β) + `(β) + 1 ≤ 2ν + 1 for j 6= (0).

We notice that the proof of this lemma needs only basic calculation but it
allows to verify the next theorem in a simple way. �
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Theorem 3.26 The numerical integration scheme

(3.25) Xn+1 =
∑

α∈Aγ

fα(τn, Xn)Iα

possesses a strong order of convergence γ.

Proof: Using the Milstein theorem we need only to calculate the two con-
stants p1 and p2. Therefore it is indispensable that p2 ≥ γ+ 1

2
and p1 ≥ γ+1.

Let us begin with a general observation:

Xτn,Xn
τn+1

−Xn+1 = Xτn,Xn
τn+1

−
∑

α∈Aγ

fα(τn, Xn)Iα

=
∑

α∈B(Aγ)

fα(τn, Xn)Iα

where Xτn,Xn
τn+1

denotes the exact solution. With this calculation we can use
the lemma above to verify the inequalities for p1 and p2. Firstly take a closer
look at p1. Let α ∈ B(A) be arbitrary. If furthermore n(α) 6= `(α) it follows
from Theorem (3.14) that

(3.26) E
[
Iα,∆tn

|Fρ

]
= 0.

Otherwise if n(α) = `(α) then

(3.27) E
[
Iα,∆tn

|Fρ

]
≤ C∆

`(α)
tn .

From this it follows that p1 ≥ γ +1. The derivation of p2 is not complicated,
either. Considering that

E
[
(Iα,∆tn

, Iβ,∆tn
)|Fρ

]
≤ C2∆

w(α,β)
tn ,

we can assume that α = β and therefore we obtain

w(α, α) = `(α)− n(α) + 2n(α) = `(α) + n(α) ≥ 2γ + 1.

Thus p2 ≥ γ + 0.5. �
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Basic schemes

If we remember the Euler method we recognize that the integration scheme
agree with the hierarchical set A0.5. The next higher stochastic integration
scheme is called Milstein method.

Definition 3.27 (Milstein method) The stochastic integration scheme
which belongs to the hierarchical set A1.0 is the Milstein method

Xn+1 = Xn + a(tn, Xn)∆tn + b(tn, Xn)∆Wn

+
1

2
b(tn, Xn)

∂b

∂x
(tn, Xn)

(
(∆Wn)2 −∆tn

)
.

The Milstein method will be of further interest later particularly with regard
to preserving positivity.
Up to now we have only developed explicit integration schemes. As in the
deterministic case there is often the problem that these schemes cannot avert
instabilities caused by stiffness (see [HW87]).
So it is clear that the same kind of problems also appears in the stochastic
case. Additionally, we have to handle the problem of numerical positivity.
Therefore we need to analyse and develop some more integration schemes.

3.3 Advanced schemes

3.3.1 Drift implicit methods

Drift implicit methods can be directly deduced from their explicit counterpart
up to a strong convergence order of γ1 = 2. But it will be only necessary to
use schemes with an order less than γ1 = 1.

Definition 3.28 (Implicit Euler) The drift implicit Euler method is de-
fined by the following integration scheme

Xn+1 = Xn + a(tn+1, Xn+1)∆tn + b(tn, Xn)∆Wn.

The only difference to the explicit one is the exchange of the drift. Taking
the next integration step into the drift confronts with the problem of solving
nonlinear equation systems. This computation is usually quite expensive.
Later on we will see that in the case of a mean-reverting process the implicit
Milstein integration scheme seems to be the method of choice.
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Definition 3.29 (Implicit Milstein) The drift implicit Milstein method
is defined by

Xn+1 = Xn + a(tn+1, Xn+1)∆tn + b(tn, Xn)∆Wn

+
1

2
b(tn, Xn)

∂

∂x
b(tn, Xn)

(
(∆Wn)2 −∆tn

)
.

It is possible to generalise implicit methods furthermore. This leads to
the so-called balanced methods.

3.3.2 Balanced methods

The difference is that balanced methods allow to choose functions to control
the behaviour of the integration. This way we can provide positivity. Yet,
in most cases we have to accept a decreased convergence speed and higher
computational cost.

To simplify the notation we consider only Ito diffusions

dXt = a(Xt)dt + b(Xt)dW

in the following but the balanced methods can be obviously applied to Ito
processes as well.

Definition 3.30 (Balanced implicit method (BIM)) The integration
scheme for the BIM is given as follows

Xn+1 = Xn + a(Xn)∆tn + b(Xn)∆W + (Xn −Xn+1)Cn(Xn)

Cn(Xn) = c0(Xn)∆ + c1(Xn)|∆W |.

In this method the functions c0 and c1 are called control functions. The
control functions must be bounded and have to satisfy the inequality

(3.28) 1 + c0(Xn)∆tn + c1(Xn)|∆W | > 0.

The BIM is based on the Euler method and has been intensively analysed
in [MPS98, Sch96, Sch97]. We can make use of the idea of the BIM and
combine it with the Milstein method.
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Definition 3.31 (Balanced Milstein method (BMM)) The BMM is gi-
ven by the following integration scheme

Xn+1 = Xn + a(Xn)∆tn + b(Xn)∆W +
1

2
b(Xn)b′(Xn)

(
(∆Wn)2 −∆tn

)
+ (Xn −Xn+1)Cn(Xn).

Cn consists again of control functions but here we need different terms to
guarantee convergence:

Cn(Xn) = c0(Xn)∆tn + c2(Xn)
(
(∆Wn)2 −∆tn

)
.

We need further the restriction

(3.29) 1 + c0(Xn)∆tn + c2(Xn)
(
(∆Wn)2 −∆tn

)
> 0

on the control functions c0 and c2.

To substantiate the next propositions we have to remember the Milstein
theorem and especially the local convergence orders p1 and p2.

Theorem 3.32 The BIM method has the following properties

1. local convergence order p1 = 1.5,

2. local square convergence order p2 = 1,

3. global strong convergence order γ1 = 0.5.

Proof: See [MPS98]. The proof is in a similar manner to the one for the
BMM method. �

Theorem 3.33 The following statements hold for the BMM method

1. local convergence order p1 = 2,

2. local square convergence order p2 = 1.5,

3. global strong convergence order γ1 = 1.0.

Proof: Statement 3 is a direct conclusion from the Milstein theorem and
the assertions 1 and 2. Therefore we only need to verify p1 and p2. In the
following let XM be the local Milstein approximation

XM
n+1 = Xn + a(Xn)∆tn + b(Xn)∆W +

1

2
b(Xn)b′(Xn)

(
(∆Wn)2 −∆tn

)
.
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This integration step is called local because it is based on an arbitrary inte-
gration step Xn which will be the BMM method in the following. In addition
to this let X denote the exact solution. Then

(3.30) |Xτn,Yn
τn+1

−Xn+1| ≤ |Xτn,Yn
τn+1

−XM
n+1|︸ ︷︷ ︸

H1

+ |XM
n+1 −Xn+1|︸ ︷︷ ︸

H2

.

Hence the problem is splitting up into two minor ones. The assertions for p1

and p2 are obvious for the term H1, because this is only the Milstein scheme.
The term H2 demands further calculation. To simplify the notation we will
use multiindices so that the schemes can now be reread as

XM
n+1 = Xn + aI(0) + bI(1) + bb′I(11)

Xn+1 = Xn + aI(0) + bI(1) + bb′I(11) + (Xn −Xn+1)(c0I(0) + c2I(11))

=
(
1 + c0I(0) + c2I(11)

)−1(
Xn + aI(0) + bI(1) + bb′I(11) + Xn(c0I(0) + c2I(11))

)
.

This leads to the following expressions for the difference:

XM
n+1 −Xn+1 =

(
1 + c0I(0) + c2I(11)

)−1[ (
1 + c0I(0) + c2I(11)

) (
Xn + aI(0) + bI(1) + bb′I(11)

)
−
(
Xn + aI(0) + bI(1) + bb′I(11) + Xn

(
c0I(0) + c2I(11)

) )]
=

(
1 + c0I(0) + c2I(11)

)−1[
c0I(0)

(
Xn + aI(0) + bI(1) + bb′I(11)

)
+c2I(11)

(
Xn + aI(0) + bI(1) + bb′I(11)

)
−Xn

(
c0I(0) + c2I(11)

) ]
=

(
1 + c0I(0) + c2I(11)

)−1[
c0I(0)

(
aI(0) + bI(1) + bb′I(11)

)
+c2I(11)

(
aI(0) + bI(1) + bb′I(11)

)
]

=
(
1 + c0I(0) + c2I(11)

)−1[
c0aI(00) + c0b

(
I(10) + I(01)

)
+ c0bb

′ (I(011) + I(101) + I(110)

)
+c2a

(
I(011) + I(101) + I(110)

)
+ c2b

(
3I(111) + I(01) + I(10)

)
+c2bb

′ (6I(1111) + 2
(
I(011) + I(101) + I(110)

)
+ I(00)

) ]
.
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Thus we have all the means we need to calculate p1 and p2∣∣∣E [Xτn,Yn
τn+1

−Xn+1|Fτn

] ∣∣∣ ≤
∣∣∣E [Xτn,Yn

τn+1
−XM

n+1|Fτn

] ∣∣∣
+
∣∣∣E [XM

n+1 −Xn+1|Fτn

] ∣∣∣
≤

(
1 + |Xn|2

)1/2
∆2

tn .

In the same way we obtain(
E
[
|Xτn,Yn

τn+1
−Xn+1|2|Fτn

] )1/2

≤
(
E
[
|Xτn,Yn

τn+1
−XM

n+1|2|Fτn

] )1/2

+
(
E
[
|XM

n+1 −Xn+1|2|Fτn

] )1/2

≤
(
1 + |Xn|2

)1/2
∆1.5

tn .

To get both inequalities it is indispensable that

1 + c0I(0) + c2I(11) > 0.

Hence it is important for the convergence of balanced methods to restrict the
control functions (see equation (3.28) and (3.29)). �

Summary

So far we have introduced a lot of different integration schemes. Obviously
there have been many more endeavors in literature to integrate stochastic
differential equations. Numerical positivity (or life time) of these schemes is
of special interest in the next chapter.
We will recognize that in most cases the Milstein schemes preserve the an-
alytical behaviour of a stochastic process. Consequently, we developed the
BMM method to get an integration scheme combining both advantages. On
the one hand we have the possibility to control the integration steps like in
the BIM method. On the other hand the BMM method is based on the
Milstein method. This is why it shows the same regularity behaviour.



CHAPTER IV

Positive numerical integration schemes

The numeric of stochastic differential equations analyses an integration scheme
with regard to three basic principles:

1. Rate of convergence,

2. Stability,

3. Positivity (preserving the analytical behaviour).

Both, rate of convergence and stability, have been widely and intensively
discussed in literature (see [GL97, HMGR99, KP92, Mil95, Sch97]). But in
this thesis numerical positivity is the most important aspect. Already in
chapter 1 we developed criteria to understand the analytical behaviour of a
stochastic process. Therefore we only need to know drift and diffusion but
we do not need to know the exact solution.

This chapter goes one step further. Actually, in the majority of cases we
do not know a closed solution for a stochastic differential equation. Thus
we need numerical integration schemes to do Monte-Carlo simulations. This
leads to the problem of numerical positivity.
A simple example is the chart of a stock usually described by a geometric
Brownian motion. If we integrate the corresponding differential equation nu-
merically we have to maintain the analytical positivity because a negative
stock price does not make sense. So one part of simulation is to take into
account the characteristics of the model.

We keep up the notation of chapter 3.

46
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4.1 Finite and eternal life time

Firstly we have to define numerical positivity. Schurz [Sch97] introduced the
concept of numerical positivity in 1995.

Definition 4.1 Let Xt be a stochastic process with

(4.1) P ({Xt > 0 for all t}) = 1.

Then the stochastic integration scheme possesses an eternal life time if

(4.2) P ({Xn+1 > 0|Xn > 0}) = 1.

Otherwise it has a finite life time.

So the life time depends only on one step of the integration scheme. Evidently
we can define the life time for an arbitrary manifold G ∈ Rn, too. Therefore
the analytical behaviour of the stochastic process is as follows:

(4.3) P ({Xt ∈ G for all t}) = 1.

Consequently, a numerical integration scheme has an eternal life time if

(4.4) P ({Xn+1 ∈ G|Xn ∈ G}) = 1.

To get a better understanding of the life time of an integration scheme we
should start with the easiest case, the Euler method. Unfortunately, this
scheme possesses a finite life time for all stochastic differential equations.

Proposition 4.2 The Euler method has a finite life time for all stochastic
differential equations.

Proof: Consider one integration step of the Euler scheme:

Xn+1 = a(tn, Xn)∆tn + b(tn, Xn)∆W.

It suffices to prove the proposition for a(tn, Xn)b(tn, Xn) > 0. Then

Xn+1 < 0 ⇐⇒ ∆W < −a(tn, Xn)

b(tn, Xn)
∆tn .

occurs with a positive probability. �

What is the key problem in this case? It is not too difficult to point out
that the main problem is that ∆W takes all values c ∈ R with a positive
probability.
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There are mainly three different concepts to avert numerical negativity:

1. Balancing (BIM),

2. Dominating (Milstein),

3. Combining (BMM).

On the one hand the BIM method allows to choose appropriate control func-
tions c0 and c1. Especially the function c1 and the appendant random term
|∆W | allow to balance the term ∆W .

The other idea is the Milstein method because the term

b(Xn)b′(Xn)
(
(∆W )2 −∆tn

)
can dominate the random term ∆W . Obviously we can combine both me-
thods to be able to balance and to dominate.

4.2 Balanced implicit method

Firstly we sum up some facts about the BIM. A detailed description can be
found in [MPS98, Sch96].

Lemma 4.3 The BIM has an eternal life time for the geometric Brownian
motion (1.21)

dXt = λXtdt + σXtdW

if the control functions c0 and c1 are such that

(4.5) 1 + (c0 + λ)∆tn > 0 and c1 > σ.

Proof: Remembering the integration scheme of the BIM and deleting the
implicitness leads to

Xn+1 = Xn + λXn∆tn + σXn∆W + (Xn −Xn+1)(c0∆tn + c1|∆W |)

= Xn

(
1 + (λ + c0)∆tn + σ∆W + c1|∆W |

1 + c0∆tn + c1|∆W |

)
.

Then the positivity for Xn+1 directly follows from (4.5) �

In the case of the geometric Brownian motion it is simple to choose the
functions c0 and c1 to provide positivity. But it is not possible to generalise
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so that it is valid for any arbitrary differential equation as we can see in the
next example:

(4.6) dXt = (α− βXt)dt + σX
1
2
t dW.

In this case it is necessary to choose c1(x) = σx−
1
2 . But if x → 0, c1 is an

unbounded function and therefore we cannot guarantee convergence. So the
BIM cannot achieve a finite life time for this process but it satisfies a weaker
positivity concept: the ε-positivity.

Definition 4.4 Let ε > 0 be an arbitrary constant. We call an integration
scheme ε-positive if

P ({Xn+1 > 0|Xn > ε}) = 1.

Remark 4.5 Evidently a scheme with eternal life time is ε-positive.

Lemma 4.6 The BIM method is ε-positive for the stochastic process (4.6)
if we choose the control functions as follows:

c0 = β,

c1(x) =

{
σx−

1
2 : if x > ε,

σε−
1
2 : else.

Proof: Also in this case deleting the implicitness leads to

Xn+1 =
Xn + (α− βXn)∆tn + σX

1
2
n ∆W + Xn(β∆tn + σX

− 1
2

n |∆W |)

1 + β∆tn + σX
− 1

2
n |∆W |

=
Xn + α∆tn + σX

1
2
n (∆W + |∆W |)

1 + β∆tn + σX
− 1

2
n |∆W |

.

Hence the BIM is ε-positive. �

4.3 Milstein method

The Milstein method has two advantages in comparison with the BIM. On
the one hand the convergence speed is twice as high as in the BIM and on
the other hand positivity can be achieved without using control functions.
This point is of special importance because numerical tests show that using
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c0 and c1 leads to a decreased convergence speed. When applying the Mil-
stein method we also have to check the numerical positivity for the stochastic
processes needed to model financial applications.

We start with a general result:

Theorem 4.7 The Milstein method

(4.7) Xn+1 = Xn + a(Xn)∆tn + b(Xn)∆W +
1

2
b(Xn)b′(Xn)

(
(∆W )2 −∆tn

)
has an eternal life time if the following properties hold:

b(x)b′(x) > 0,(4.8)

x >
b(x)

2b′(x),
(4.9)

∆tn <
2xb′(x)− b(x)(

b(x)b′(x)− 2a(x)
)
b′(x)

.(4.10)

The last condition is only necessary if the denominator is positive.

Proof: Let x = Xn > 0 and define g(z) := b(x)z + 1
2
b(x)b′(x)z2. Then (4.7)

can be written as

Xn+1 = x +

(
a(x)− 1

2
b(x)b′(x)

)
∆tn + g(∆W ).

According to (4.8) g possesses a global minimum. For that purpose an obvi-
ous calculation shows that

g′(z) = b(x) + b(x)b′(x)z.

Hence we get

z̃ = − 1

b′(x)
with g(z̃) = − b(x)

2b′(x)
.

For this reason we can calculate the lower bound for all random terms ∆W .
This enables us to exchange the value of g(∆W ) by its minimum

Xn+1 ≥ x +

(
a(x)− 1

2
b(x)b′(x)

)
∆tn −

b(x)

2b′(x)
.

Considering the requirements (4.9) and (4.10) we get that Xn+1 > 0. �

Corollary 4.8 The Milstein method has an eternal life time for the numer-
ical integration of the geometric Brownian motion (1.21) if ∆tn < 1

σ2−2µ
.

Proof: We only need to verify the requirements of the theorem above, thus
a(x) = µx as well as b(x) = σx and b′(x) = σ. So obviously the requirements
(4.8) and (4.9) are satisfied and we get (4.10) with a short calculation:
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2xb′(x)− b(x)(
b(x)b′(x)− 2a(x)

)
b′(x)

=
2xσ − xσ

(σ2x− 2µx)σ

=
1

σ2 − 2µ
> ∆tn .

In most financial applications we have σ < 1. Hence the step size restriction
allows a ∆tn > 1 which is of course satisfied as we need a finer discretisation
to get an adequate approximation. �

In the case of the Brownian motion the question of numerical positivity
does not arise because the exact solution is already known. That is one big
difference to the class of mean-reverting processes.

4.4 Mean-reverting processes

We have already noticed that the BIM only guarantees ε-positivity for a
mean-reverting process. Thus the applicability is restricted.
To check the suitability of the Milstein method we consider an arbitrary
mean-reverting process

dXt = (α− βXq
t )dt + σXp

t dW.

With this arbitrary parameter constellation it is not possible to get a closed
solution. The question of analytical positivity has already been studied in
chapter 1. First we will take a closer look at the most common mean-reverting
process. In scientific applications this process presents the usual model if Xt

oscillates around a mean

(4.11) dXt = (α− βXt)dt + σX
1
2
t dW.

In chapter 1 we have analysed this process and proved its positivity in the
case that α > σ2

2
. The explicit Milstein scheme is not the right one for the

numerical integration because of the negative sign in front of Xt in the drift.
Therefore it is necessary to apply the implicit Milstein method.

Xn+1 = Xn + a(Xn+1)∆tn + b(Xn)∆W +
1

2
b(Xn)b′(Xn)

(
(∆W )2 −∆tn

)
.

Theorem 4.9 The implicit Milstein method has an eternal life time for the
integration of the stochastic process (4.11) independent of stepsize ∆tn .
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Proof: One integration step is as follows

Xn+1 = Xn + (α− βXn+1)∆tn + σX
1
2
n ∆W +

1

4
σ2
(
(∆W )2 −∆tn

)
.

In an elementary way we can eliminate the implicitness

Xn+1 =
Xn + α∆tn + σX

1
2
n ∆W + 1

4
σ2 ((∆W )2 −∆tn)

1 + β∆tn

=
N(Xn)

D(Xn)
.

Now we only have to verify that the numerator N(Xn) is positive. Employing

the idea of Theorem 4.7 with a(x) = α and b(x) = σx
1
2 we obtain

N(Xn) = Xn +

(
α− 1

4
σ2

)
∆tn + g(∆W )

≥ Xn +

(
α− 1

4
σ2

)
∆tn + min

∆W∈R
g(∆W )

= Xn +

(
α− 1

4
σ2

)
∆tn + g(∆̃W )

= Xn +

(
α− 1

4
σ2

)
∆tn −Xn

=

(
α− 1

4
σ2

)
∆tn > 0,

since the analytical positivity causes α > 1
2
σ2. �

This result is rather surprising because the Milstein method provides
numerical positivity without any restrictions. Now we can deal with a more
general case

(4.12) dXt = (α− βXt)dt + σXp
t dW,

where p > 1
2
. If this is so the Milstein method can also preserve positivity.

Lemma 4.10 The step size adapted implicit Milstein method has an eternal
life time for the integration of (4.12).

Proof: Again the first step of the proof is eliminating implicitness

Xn+1 =
Xn + α∆tn + σXp

n∆W + 1
2
pσ2X2p−1

n ((∆W )2 −∆tn)

1 + β∆tn

=
N(Xn)

D(Xn)
.
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Also in this case we have to check the positivity only for the numerator.
Remembering Theorem 4.7 we ascertain that the drift a(x) = α and the
diffusion b(x) = σxp fulfils

b(x)b′(x) = σ2px2p−1 > 0,

just as
b(x)

2b′(x)
=

x

2p
< x.

So the restriction (4.10) on ∆tn gives us the step size specification

∆tn <
2xb′(x)− b(x)(

b(x)b′(x)− 2a(x)
)
b′(x)

=
2σpxp − σxp

(σ2px2p−1 − 2α)σxp−1

=
2p− 1

pσ2x2p−2 − 2αx−1
.

This requirement strictly depends on the parameter p:

Case 1: (p = 1)
Considering the assumption σ2 > 2αx−1 we get

1

σ2 − 2αx−1
≥ 1

σ2
> ∆tn .

This enables us to fix the stepsize at the beginning.

Case 2: (1
2

< p < 1)
∆tn has only to be restricted if the denominator is positive in restriction
(4.10). So this leads to

pσ2x2p−2 > 2αx−1

⇐⇒ x2p−1 > 2α
pσ2

⇐⇒ x >
(

2α
pσ2

) 1
2p−1

=: `.

Therefore x is lower bounded. Hence it is only necessary to analyse the
behaviour of the denominator in the interval I = [`,∞):

N(`) = 0 and lim
x−→∞

N(x) = 0.
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The denominator is a continuous function on a compact interval. There-
fore it has got a maximum. Due to the fact that the numerator is con-
stant this maximum gives us the restriction for the stepsize ∆tn . Basic
calculation verifies that

x̃ =

(
2α

(2− 2p)pσ2

) 1
2p−1

is the maximiser of the denominator. This term seems to be quite
difficult but we only need an appropriate approach. For that reason we
see that the restriction for the step size in the case p = 1 is a sufficient
condition for 1

2
< p < 1 as well.

Case 3: (p > 1)
The calculation is similar to case 2. But now the problem is that the
denominator increases with an increasing x. As x does not have to
be bounded above we cannot achieve a lower bound for ∆tn at the
beginning of the procedure. In this case it is only possible to use a step
size adapted integration scheme recalculating ∆tn in each step.

This proof shows that the parameter p of a mean-reverting process has a
great impact on the numerical behaviour of the Milstein scheme. �

Remark 4.11 Alternatively one can use the BIM method if p > 1. Numer-
ical tests show that in this case also the Milstein method is the better choice
because of its higher convergence order and the use of control functions in
the BIM.

4.5 Integration in the extended Libor market

model

Concluding this chapter we will study the numerical behaviour of different
stochastic differential equations which model the forward rates in the ex-
tended Libor market model.

Integration of Displaced Diffusion

The displaced diffusion models the forward rates as follows (see also section
2.2.1 and especially the equation (2.7)):

dXt = σDD(t)(Xt + m)dB.
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Remembering the analytical behaviour we know that this process takes values
in [−m,∞).

Proposition 4.12 The explicit Milstein method has an eternal life time for
the integration of equation (4.5).

Remark 4.13 Eternal life time has to be understood in a broader sense
because the analytical structure is the interval [−m,∞).

Proof: The Milstein method can be written as (see equation (4.3) in the
proof of Theorem 4.7):

Xn+1 = x +

(
a(x)− 1

2
b(x)b′(x)

)
∆tn + g(∆W )

≥ x +

(
a(x)− 1

2
b(x)b′(x)

)
∆tn + min

∆W∈R
g(∆W )

= x +

(
a(x)− 1

2
b(x)b′(x)

)
∆tn −

b(x)

2b′(x)
.

The next step is to insert the parameters a = 0 and b = σDD(x + m)

Xn+1 = x− 1

2
σ2

DD(x + m)∆tn −
m + x

2

=
1

2
x(1− σ2

DD∆tn)− 1

2
m(1 + σ2

DD∆tn)

≥ 1

2
m(1− σ2

DD∆tn)− 1

2
m(1 + σ2

DD∆tn)

= m.

Therefore the Milstein method has an eternal life time for the displaced
diffusion model. �

Integration of Constant Elasticity of Variance

The model of constant elasticity of variance describes the forward rates as
follows (see also section 2.2.2 and equation (2.9)):

(4.13) dXt = σCEV (t)Xα
t dB

In this case the stochastic process takes only positive values. But the bound-
ary 0 has a different behaviour with respect to α (see equation 1.23)).
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Proposition 4.14 The Milstein method has the following properties for the
integration of equation (4.13):

• α ≤ 1
2
⇒ finite life time,

• α > 1
2
⇒ eternal life time if step size is adapted.

Proof: The same calculation as in the case of the DD model leads to

Xn+1 = x− 1

2
α2σ2

CEV x2α−1∆tn −
x

2α

= x

(
1− 1

2α

)
− 1

2
α2σ2

CEV x2α−1

with a = 0 and b = σCEV xα. If α ≤ 1
2

both terms are negative so that we
get a finite life time. In case that α > 1

2
we can calculate further:

Xn+1 =
x

2α

(
2α− 1− α2σ2

CEV x2α−2∆tn

)
.

Then the step size adaption is obviously

∆tn <
2α− 1

α2σ2
CEV x2α−2

.

In this inequality we have to distinguish between two cases. Firstly if 1
2

<
α < 1 then the discretisation size ∆tn must be small if Xn is small. On the
other hand if 1 < α we get a decreasing step size with an increasing Xn. �

Proposition 4.15 The BIM has the following properties for the integration
of equation (4.13):

• α < 1 ⇒ ε-positive,

• α ≥ 1 ⇒ eternal life time.

First let α < 1. Then the parameters c0 and c1 can be chosen as

c0 = 0,

c1(x) =

{
σCEV xα−1 if x > ε,

σCEV εα−1 else.

For α ≥ 1 the choice is much easier

c0 = 0,

c1(x) = σCEV xα−1.

Proof: Straight forward calculation verifies the statements. �
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Integration of stochastic volatility

The dynamic of the Libor market model can be further improved by intro-
ducing stochastic volatility. Usually the stochastic process describing the
volatility is a mean-reverting process. Since this extension is used as an
additive in the Libor market model it is sufficient to study the numerical
characteristics of mean-reverting processes. This has already been done in
this chapter (see section 4.4).

Summary

The Milstein scheme is an integration method that preserves the analytical
behaviour of a stochastic process in a natural way. It is not necessary to use
control functions to prevent the numerical values from becoming negative.
Numerical tests show that this property strongly influences the convergence
speed of integration schemes as the use of control functions leads to higher
computational cost and to a reduced approximation accuracy.



CHAPTER V

Numerical tests

The last chapter of this thesis deals with numerical tests. Thereby the theo-
retical results should be verified in practice. Special attention is paid to the
aspect of numerical positivity.
The tests are mainly done with regard to two different aspects. On the one
hand we study how exact the Monte-Carlo approximation can approach the
caplet prices. This comparison can be done quite easily because we already
have a closed solution for caplets.
On the other hand we analyse the convergence speed and the preserving of
positivity without any direct financial applications. This will be done by
integrating different mean-reverting processes.

Remark 5.1 The Balanced Milstein method is introduced in this thesis but
it is not incorporated in the numerical tests. The main reason is that in
the majority of cases the use of control function decreases the convergence
speed and increases the computational cost. As the Milstein method already
preserves positivity it is not necessary to use the BMM.

5.1 Application in financial mathematics

The numerical simulation of caplet prices is an important indicator to study
the applicability of the different integration schemes in the Libor market
model. Thus the approximation behaviour is of interest as well as the com-
putational time. The caplet price approximation is connected with the weak
convergence speed because we compare expectations. To make this point
clear let Fk(t) be the analytical forward rate and FN

k (t) the numerical one.

58
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Then the difference of the caplet prices is given by∣∣∣∣∣∣∣δkB(t, Tk+1)E
[
(Fk(Tk)−K)+

]︸ ︷︷ ︸
C(t)

−δkB(t, Tk+1)E
[
(FN

k (Tk)−K)+
]∣∣∣∣∣∣∣

with the exact caplet price C(t). Thus the obvious thing to do would be
comparing caplet prices. In consideration of the fact that we are interested
in pricing path-dependent interest rates derivatives the strong convergence
order is more important. In the most simple case of the Libor market model
the forward rates are driven by a geometric Brownian motion. Hence we have
a closed formula. This enables us to compare the strong convergence order:

E
[
|Fk(Tk)− FN

k (Tk)|
]
.

So the applicability of the different integration schemes will be tested for
the caplet price approximation as well as for the strong convergence towards
the forward rates.

Integration schemes

In this section we compare the following four integration schemes:

1. Euler scheme,

2. Milstein scheme,

3. BIM,

4. log-Euler scheme.

The log-Euler schemes is constructed by transforming the original stochastic
differential equation using the Ito theorem and the logarithm function. This
leads to the following method:

Definition 5.2 The log-Euler method for the integration of the stochastic
differential equation

dFk = σkϕ(Fk)dBTk+1 ,

is given by:

Fn+1 = Fn exp

(
−1

2

(
σk

ϕ(Fn)

Fn

)2

∆tn +
ϕ(Fn)

Fn

∆W

)
.

Obviously we get the CEV model for ϕ(x) = xα and the DD model for
ϕ(x) = x + m.
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Proof: For detailed proof see [BR97]. We will only look at a short sketch
of the proof. Define g(t, x) = log(x) and apply Ito’s theorem on the forward
rate Fk(t), then

dg(Fk(t)) =
1

Fk(t)
dFk(t)−

1

2(Fk(t))2
(dFk(t))

2

= σ
ϕ(Fk(t))

Fk(t)
dW − 1

2

(
σ

ϕ(Fk(t))

Fk(t)

)2

dt.

Thus we can directly deduce an integration scheme for g(Fk(t)):

g(Fn+1) = g(Fn) +

(
−1

2

(
σk

ϕ(Fn)

Fn

)2

∆tn +
ϕ(Fn)

Fn

∆W

)

⇒ Fn+1 = Fn exp

(
−1

2

(
σk

ϕ(Fn)

Fn

)2

∆tn +
ϕ(Fn)

Fn

∆W

)
.

This motivates the log-Euler method but there is still no answer to the ques-
tion of numerical convergence. �

Remark 5.3 All numerical tests use an equidistant discretisation size ∆tn

which we denote with ∆t.

5.1.1 Forward rate approximation

First of all we will analyse the strong convergence speed of the different
integration schemes. Our test equation is:

dFk(t) = 0.2Fk(t)dBTk+1 with Fk(0) = 0.06.

The exact solution is

Fk(t) = Fk(0) exp

(
−1

2
σ2t + σWt

)
.

Remark 5.4 Integrating this stochastic differential equation the log-Euler
scheme provides accurate numerical results because the transformation with
the exponential function leads to the analytical solution. Therefore we will
only compare the other three methods.
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Figure 5.1: Fk(0) = 0.06, σk = 0.2, number of paths 2000000, Error =
E
[
|Fk(Tk)− FN

k (Tk)|
]
, discretisation stepsizes: ∆t = 1, 0.5, 0.25, 0.125, 0.0625.

Picture 5.1 confirms our expectation. The Milstein method is superior
in this comparison. With fixed computational time it has the smallest error
and vice versa with fixed error it needs least computational time. By the
way the Milstein method preserves the analytical positivity see corollary 4.8.

Unfortunately we have a closed solution for the forward rates only in the
most simple case. Thus we can only compare the caplet price approximation
in the extended version of the Libor market model.

5.1.2 Constant Elasticity of Variance

Firstly we analyse the numerical behavior in the CEV extension. This model
is characterised by the fact that the forward rates take only nonnegative
values. Indeed the boundary 0 is attainable if 0 < α < 1.
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CEV model with α = 0.5

Maturity T = 1 T = 2 T = 4 T = 6 T = 10 Comp.I
Exact 21.878 29.124 36.506 39.623 40.171 time
Euler 21.891 29.163 36.581 39.686 40.242 1.8

Milstein 21.900 29.161 36.570 39.695 40.239 2.0∆t = 1
2 BIM 18.230 24.185 30.218 32.802 33.270 3.3

log-Euler 21.903 29.163 36.559 39.703 40.282 3.2
Euler 21.885 29.141 36.531 39.637 40.197 5.0

Milstein 21.894 29.147 36.547 39.663 40.211 5.5∆t = 1
4 BIM 19.061 25.313 31.701 34.417 34.913 8.3

log-Euler 21.888 29.121 36.545 39.654 40.224 8.0
Euler 21.880 29.149 36.513 39.611 40.193 16.5

Milstein 21.878 29.126 36.516 39.635 40.177 17.7∆t = 1
8 BIM 19.754 26.295 32.930 35.727 36.266 23.3

log-Euler 21.903 29.151 36.525 39.601 40.158 22.6

Table 5.1: dFk(t) = σkFk(t)αdBTk+1 with: Fk(0) = 0.06, σk = 0.04899, α = 0.5,
tenor spacing T = 0.5, maturity times Tk = 1, 2, 4, 6, 10, strike K = 0.06, Monte Carlo
simulation with 5000000 paths.

In table 5.1 we see that the choice of the integration scheme does not make
any decisive difference as long as we do not use the BIM. At first glance the
other three schemes seems to be indistinguishable. But taking a more pre-
cise look we notice that with a decreased stepsize the Milstein scheme is the
best choice. Especially with the smallest discretisation we get a rather close
approach.
Two reason for this behaviour can be identified. The first is obviously the
higher convergence order of the Milstein scheme. The second reason is on
the one hand the numerical instability of the Euler scheme and on the other
hand the point that the log-Euler scheme enforces the numerical positivity.
This enforcing averts better results. We will see this handicap in the other
numerical simulations, too.
Another important aspect is the computational time. We notice that the
difference between the Euler and the Milstein scheme is marginal. The BIM
is no appropriate choice with regard to the computational cost either.

The relation between approximation error and computational cost be-
comes clear by a a comparison of these two aspects. This is done in the next
figure 5.2.
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Figure 5.2: dFk(t) = σkFk(t)αdBTk+1 with: Fk(0) = 0.06, σk = 0.04899, α = 0.5, tenor
spacing T = 0.5, maturity times Tk = 1, 2, 4, 6, strikes K = 0.04, 0.05, 0.06, 0.07, 0.08,
number of paths 2000000, Error = ||Cexact−CMC ||2,K×Tk

(grid points: strike × maturity
times), discretisation stepsizes: ∆t = 1, 0.5, 0.25, 0.125.

Comparing these three methods shows that using the Milstein scheme
leads to an exact approximation in shortest time. Particularly for strikes
which are not at-the-money the Milstein scheme provides the best results.
This fact is just mentioned as it makes no sense to present more tables with
pure data.

Another important aspect is the error of the integration scheme compared
with the number of simulated paths. Here we have to answer the question
how many paths we need to get a sufficient approach.
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Figure 5.3: Fk(0) = 0.06, σk = 0.04899, α = 0.5, tenor spacing T = 0.5, maturity
times Tk = 1, 2, 4, 6, 10, strikes K = 0.04, 0.05, 0.06, 0.07, 0.08, integration steps ∆t = 0.25,
Error = ||Cexact − CMC ||2,K×Tk

(grid points: strike × maturity times)

The figure 5.3 shows the error of the numerical caplet calculation against
the number of simulated paths. We see that a minimum of 100000 paths is
necessary to be able to interpret the convergence behaviour of the different
schemes. Simulating less paths the oscillation makes an analysis of the ap-
proach impossible.

We notice that 1000000 paths are sufficient to guarantee a stable approx-
imation. Thus the simulation of 5000000 paths in the first example table
5.1 and 2000000 in figure 5.2 is surely an appropriate choice to interpret the
different integration schemes.

A careful consideration of this test shows that the systematic error of the
Milstein scheme is the lowest and the simulation of an exceeding number of
paths stabilises this result.

CEV model with α = 1.5

The situation in the CEV model for α = 1.5 is quite different as we can see
in table 5.2 on the next page.
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Maturity T = 1 T = 2 T = 4 T = 6 T = 10 Comp.II
Exact 21.867 29.113 36.488 39.604 40.151 time
Euler 22.115 29.638 37.245 40.498 43.545 2.3

Milstein 21.885 29.060 36.387 39.496 40.092 2.5∆t = 1
2 BIM 18.392 24.347 30.456 33.018 33.522 3.9

log-Euler 21.904 29.174 36.567 39.606 39.350 2.2
Euler 22.067 29.444 36.918 40.094 43.063 6.1

Milstein 21.830 29.049 36.405 39.475 40.138 6.5∆t = 1
4 BIM 19.140 25.432 31.904 34.611 35.100 10.3

log-Euler 21.860 29.087 36.498 39.550 39.509 5.9
Euler 21.948 29.266 36.634 39.758 41.470 18.7

Milstein 21.878 29.123 36.495 39.589 40.152 19.6∆t = 1
8 BIM 19.839 26.359 33.013 35.864 36.336 35.3

log-Euler 21.873 29.116 36.488 38.629 39.322 18.4

Table 5.2: Fk(0) = 0.06 , σk = 0.8161, α = 1.5, tenor spacing T = 0.5, maturity times
Tk = 1, 2, 4, 6, 10, K = 0.06, Monte Carlo simulation with 5000000 paths

First we notice that in this case the computational times are nearly equal
with a little advantage for the log-Euler scheme. Again the comparison of
the computational effort with the approximation error is more significant.

Figure 5.4: σk = 0.8161, α = 1.5, all other parameters as in figure 5.2.
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The Milstein scheme provides in this case also the best results in the
lowest time.

Figure 5.5: Fk(0) = 0.06 , σk = 0.8161, α = 1.5, tenor spacing T = 0.5, maturity
times Tk = 1, 2, 4, 6, 10, strikes K = 0.04, 0.05, 0.06, 0.07, 0.08, integration steps ∆t = 0.25,
Error = ||Cexact − CMC ||2,K×Tk

(grid points: strike × maturity times)

Comparing the error behaviour in the last CEV test, figure 5.5 above, we
notice that all in all the error is higher than in the case of α = 0.5. Here as
well we see that the error behaviour stabilises when we reach a number of
100000 simulated paths.

Conclusion CEV

The CEV model shows that different choices of the parameter α have a great
impact on the numerical simulation. In the case that α = 0.5 all integration
schemes provide sufficient caplet price approximations. Also for great dis-
cretisation stepsizes ∆t the approaches are sufficient.
In contrast the quality of approximation significantly depends on integration
scheme and discretisation stepsize when α = 1.5.

Summing up we ascertain that the Milstein scheme turned out to be the
best method to simulate the forward rates in the CEV model.
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5.1.3 Displaced Diffusion

The model of displaced diffusion is a second possibility to get a smile in the
implicit volatility surface. Indeed the problem is that the forward rates can
take negative values as the stochastic process lives on the interval [−m,∞).
Therefore it makes no sense to try to preserve positive values in the numerical
integration. The analysis of the Milstein method in the chapter before shows
that it provides an eternal life time with respect to the interval [−m,∞).
This raises up the question if the numerical approximation of caplet prices
profits from this fact.

Remark 5.5 The numerical results of the BIM are also inadequate in the
displaced diffusion model. Accordingly the outcomes are not presented.

DD model with m = 0.02

Maturity T = 1 T = 2 T = 4 T = 6 T = 10 Comp.III
Exact 29.159 38.805 48.600 52.707 53.362 time
Euler 29.318 39.062 49.027 53.214 53.899 1.2∆t = 1

2 Milstein 29.195 38.795 48.563 52.693 53.358 1.2
Euler 29.268 38.988 48.887 53.036 53.690 4.0∆t = 1

4 Milstein 29.170 38.816 48.623 52.768 53.385 4.0
Euler 29.215 38.894 48.780 52.846 53.407 14.6∆t = 1

8 Milstein 29.188 38.805 48.629 52.698 53.354 14.6

Table 5.3: Fk(0) = 0.06, σk = 0.2, m = 0.02, tenor spacing T = 0.5, maturity times
Tk = 1, 2, 4, 6, 10, strike K = 0.06, Monte Carlo simulation with 5000000 paths.

In the first example, table 5.3, we only present the results for the Euler
and the Milstein scheme as the log-Euler has great numerical instabilities.
The reason for these instabilities is that the log-Euler enforces numerical
positivity but in this case the stochastic process takes values in [−0.02,∞).
Comparing the Euler and the Milstein method we obtain a familiar result.
The Milstein scheme is superior for the approximation and on the other
hand the computational times are nearly equal. This result becomes more
meaningful comparing error and computational time.
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Figure 5.6: Fk(0) = 0.06, σk = 0.2, m = 0.02, tenor spacing T = 0.5, maturity times
Tk = 1, 2, 4, 6, strikes K = 0.04, 0.05, 0.06, 0.07, 0.08, number of paths 2000000, Error =
||Cexact − CMC ||2,K×Tk

(grid points: strike × maturity times)

Also for the DD model the number of necessary paths is of great interest
for the numerical simulation. Picture 5.7 below shows that again 100000
paths are the lower bound to reach a satisfactory approach.

Figure 5.7: Fk(0) = 0.06, σk = 0.2, m = 0.02, tenor spacing T = 0.5, maturity times
Tk = 1, 2, 4, 6, 10, strikes K = 0.04, 0.05, 0.06, 0.07, 0.08, integration steps ∆t = 0.25, Error
= ||Cexact − CMC ||2,K×Tk

(grid points: strike × maturity times)
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DD model with m = −0.02

A negative choice of the parameter m is a new challenge for the different
integration schemes as the forward rates live in the interval [−m,∞).

Time T = 1 T = 2 T = 4 T = 6 T = 10 Comp.IV
Exact 14.580 19.402 24.298 26.353 26.681 Cost.
Euler 14.658 19.571 24.513 26.580 26.890 1.2

∆t = 1
2 Milstein 14.601 19.412 24.313 26.391 26.698 1.2

log-Euler 14.588 19.432 24.317 26.383 26.700 1.3
Euler 14.644 19.432 24.317 26.383 26.700 4.0

∆t = 1
4 Milstein 14.586 19.415 24.304 26.367 26.674 4.0

log-Euler 14.575 19.392 24.296 26.322 26.691 4.1
Euler 14.616 19.459 24.367 26.414 26.742 14.6

∆t = 1
8 Milstein 14.561 19.383 24.312 26.368 26.707 14.6

log-Euler 14.577 19.410 24.308 26.338 26.628 14.8

Table 5.4: Fk(0) = 0.06, σk = 0.2, m = −0.02, tenor spacing T = 0.5, maturity times
Tk = 1, 2, 4, 6, 10, strike K = 0.06, Monte Carlo simulation with 5000000 paths.

Calculating the caplet prices shown in table 5.4 is particularly charac-
terised by rather good approximations no matter which integration scheme we
use. But giving more attention we notice that actually the Milstein method
provides the best results. One reason is that only the Milstein scheme makes
the numerical approximation to stay in the interval [0.02,∞) .

Figure 5.8 on the next page compares the computational effort with the
quality of the approximation and again the Milstein method turns out to be
the best.
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Figure 5.8: Fk(0) = 0.06, σk = 0.2, m = −0.02, tenor spacing T = 0.5, maturity times
Tk = 1, 2, 4, 6, strikes K = 0.04, 0.05, 0.06, 0.07, 0.08, number of paths 2000000, Error =
||Cexact − CMC ||2,K×Tk

(grid points: strike × maturity times)

Comparing error and number of paths in the displaced diffusion model in
the figure 5.9 we get accustomed results. As the number of paths increases
the error stabilises. With 1000000 paths or more we obtain a rather good
approximation.

Figure 5.9: Fk(0) = 0.06, σk = 0.2, m = −0.02, tenor spacing T = 0.5, maturity times
Tk = 1, 2, 4, 6, 10, strikes K = 0.04, 0.05, 0.06, 0.07, 0.08, integration steps ∆t = 0.25, Error
= ||Cexact − CMC ||2,K×Tk

(grid points: strike × maturity times)
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Conclusion DD

In the case of numerical integration in the displaced diffusion model the
Milstein method is always superior to the Euler method. Firstly the compu-
tational costs are significantly lower. Secondly the Milstein method provides
the better approximation to the exact caplet prices and additionally it pre-
serves the analytical structure of the stochastic process. The log-Euler is
problematic because we can use it only if m < 0.

5.2 Mean-reverting processes

The following section is quite independent from financial mathematics. The
integration schemes are tested particularly with regard to the class of mean-
reverting processes. Most important criteria is guaranteeing positivity. Let
us start with a first example:

dXt = (1−Xt)dt + 1.4X
1
2
t dW with X0 = 1.

This stochastic differential equation is a stochastic process typically used
to simulate stochastic volatility in the extended Libor market model (see
[ABR01]).

Euler BIM Milstein imp. Milstein
Time Stepsize Error Negative Error Negative Error Negative Error Negative

∆t = 1
2 0.2754 27.29 % 0.5187 0 % 0.2464 23.14 % 0.1503 0 %

T = 1 ∆t = 1
4 0.1926 25.82 % 0.4339 0 % 0.1166 7.45 % 0.0677 0 %

∆t = 1
8 0.1370 21.59 % 0.3426 0 % 0.0558 0.65 % 0.0333 0 %

∆t = 1
2 0.3290 45.54 % 0.7118 0 % 0.2639 34.72 % 0.2080 0 %

T = 2 ∆t = 1
4 0.2241 43.39 % 0.5832 0 % 0.1269 12.12 % 0.0849 0 %

∆t = 1
8 0.1563 38.88 % 0.4499 0 % 0.0607 1.18 % 0.0397 0 %

∆t = 1
2 0.3435 69.18 % 1.2734 0 % 0.2767 53.12 % 0.3174 0 %

T = 4 ∆t = 1
4 0.2333 67.21 % 1.0188 0 % 0.1305 20.63 % 0.1019 0 %

∆t = 1
8 0.1610 62.44 % 0.7415 0 % 0.0633 2.22 % 0.0435 0 %

Table 5.5: Time: [0,T], stepsize: integration stepsize ∆t, Error: integration error
compared with implicit Milstein (∆t = 1

4096 ), Negative: percentage of negative paths,
BIM: c0(x) = 1 and c1(x) = 1.4x−

1
2 .

The results of the test in table 5.5 clearly show that the implicit Milstein
method is superior to the other methods concerning convergence speed as
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well as remaining positivity.
As expected the Euler scheme cannot carry forward the analytical positivity
to numerics. Because of the convergence order of γ1 = 0.5 the convergence
speed is not as high as the one of the Milstein methods.
The BIM can indeed remain positivity. Admittedly the error is even bigger
than in the Euler method because an extensive use of the control functions
c0 and c1 is necessary.

The parameter constellation of the next example

dXt = (1−Xt)dt + 1.4XtdW with X0 = 1

is slightly different as in the example above.

Euler BIM Milstein imp. Milstein
Time Stepsize Error Negative Error Negative Error Negative Error Negative

∆t = 1
2 0.5250 28.77 % 0.6130 0 % 0.4484 10.35 % 0.2427 0 %

T = 1 ∆t = 1
4 0.3997 25.17 % 0.5046 0 % 0.2291 0 % 0.1266 0 %

∆t = 1
8 0.2767 13.76 % 0.3585 0 % 0.1031 0 % 0.0716 0 %

∆t = 1
2 0.8021 48.89 % 0.8930 0 % 0.5533 24.71 % 0.3505 0 %

T = 2 ∆t = 1
4 0.5211 42.95 % 0.6912 0 % 0.2732 0 % 0.1500 0 %

∆t = 1
8 0.3301 24.30 % 0.4415 0 % 0.1120 0 % 0.0819 0 %

∆t = 1
2 1.1377 74.81 % 1.9005 0 % 0.7252 47.74 % 0.5270 0 %

T = 4 ∆t = 1
4 0.6278 66.63 % 1.2736 0 % 0.2743 0 % 0.1537 0 %

∆t = 1
8 0.3602 41.55 % 0.5903 0 % 0.1163 0 % 0.0852 0 %

Table 5.6: Time: [0,T], stepsize: integration stepsize ∆t, error: integration error
compared with implicit Milstein (∆t = 1

4096 ), Negative: percentage of negative paths,
BIM: c0(x) = 1 and c1(x) = 1.4.

The results in this test are quite similar to the results of the first exam-
ple. The question arises if the better integration behaviour of the implicit
Milstein method negatively influences the computational time.
Measuring the computational effort we notice that Euler and Milstein method
take roughly the same time to simulate one path. In contrast the computa-
tional time the BIM takes is circa three times as high because more calcula-
tion is needed.
Thus the computational effort is no argument against the implicit Milstein
method. To make that perfectly clear figure 5.10 shows the relation between
error and computational time.
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Figure 5.10: dXt = (1 − Xt)dt + 1.4
√

XtdW , path wise error,100000 paths, BIM:
c0 = 1 and c1(x) = 1.4x−

1
2

To conclude there is a last example, table 5.7 below. The chosen param-
eter constellation shows even clearer the disadvantages of Euler method and
BIM.

dXt = (0.125− 4Xt)dt + 0.5
√

XtdW with X0 = 0.1

∆t E-S E-N BIM-S BIM-N M-S M-N iM-S iM-N
2−3 0.0103349 67.62 % 0.0136404 0 % 0.0089764 53.56 % 0.0110619 0 %
2−4 0.0071670 59.51 % 0.0110236 0 % 0.0043066 18.62 % 0.0033908 0 %
2−5 0.0 050365 52.93 % 0.0088861 0 % 0.0020941 0.03 % 0.0014815 0 %
2−6 0.0035999 46.80 % 0.0072702 0 % 0.0010266 0.01 % 0.0007614 0 %
2−7 0.0025479 41.77 % 0.0057562 0 % 0.0005148 0 % 0.0003927 0 %
2−8 0.0018158 37.28 % 0.0045040 0 % 0.0002616 0 % 0.0002021 0 %
2−9 0.0012823 33.76 % 0.0033995 0 % 0.0001339 0 % 0.0001034 0 %
2−10 0.0009086 30.89 % 0.0026244 0 % 6.8521e-05 0 % 5.2497e-05 0 %
2−11 0.0006399 28.30 % 0.0019556 0 % 3.5276e-05 0 % 2.6341e-05 0 %
2−12 0.0004512 26.10 % 0.0014425 0 % 1.8552e-05 0 % 1.2706e-05 0 %

Table 5.7: ∆t : integration stepsize, E-S: strong approximation error Euler scheme, E-
N : percentage of negative paths Euler scheme, BIM: Balanced implicit method (c0(x) = 4
and c1(x) = 0.5x−

1
2 ), M: Milstein scheme, iM: implicit Milstein

Also with a very small discretisation stepsize the Euler method cannot
guarantee positivity. Additionally with decreasing stepsize the higher con-
vergence order of the Milstein scheme becomes more and more profitable
compared to Euler and BIM.
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Conclusion Mean-reverting

The examples make clear that the appropriate choice of an integration scheme
is essential for the right numerical calculation of a mean-reverting process.
Hereby the convergence order is as important as the non-negativity. The im-
plicit Milstein method can meet both requirements. Furthermore it is nearly
at optimal computational cost. For this reason the implicit Milstein scheme
is the method of choice to integrate a mean-reverting process.



CHAPTER VI

Summary

This diploma thesis analysed the topic of positive numerical integration of
stochastic differential equations, a topic which is not only of theoretical inter-
est as there are a lot of applications. In this particular case the motivation
comes from pricing interest rates derivatives as a task in financial mathe-
matics.

We considered the Libor market model and different extensions as a pos-
sibility to model interest rates by forwards rates. Naturally the forward rates
are modelled by stochastic differential equations. Hence we had to answer
two question:

• When is a stochastic process analytically positive?
(Analytical positivity)

• How can analytical positivity preserved numerically?
(Numerical positivity)

We answered both questions in the framework of the Libor market model in
this thesis.

Stochastic processes describing the forward rates can be classified with
respect to analytical positivity by using diffusion theory. Following a clas-
sical approach enables us to characterise the analytical behaviour by basic
calculations.

But this thesis goes one step further. As the extended Libor market model
does not provide closed solutions to price interest rate derivatives we need
numerical approximations. To be able to tackle the problem of numerical

75
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positivity we studied different numerical integration schemes. Combining the
BIM with the Milstein method we developed the balanced Milstein method
(BMM).

The analysis of positive numerical integration is the very heart of this
thesis. After defining numerical positivity we studied different integration
methods especially with regard to this characteristic. As already known, the
BIM preserves the positivity of some stochastic processes. But within this
thesis we went another way. Analysing the Milstein method we obtained the
surprising result that this method maintains positivity in a natural way.

Numerical tests concluded our analysis of numerical positivity. On the
one hand we tested different integration methods on their applicability in
financial applications. It turned out that preserving positivity is essential
for an accurate approximation. In the case of the forward rates simulation
the Milstein method is superior. On the other hand we considered mean-
reverting processes. In this case the implicit Milstein scheme is the method
of choice. Indeed both results are not surprising as preserving of geometric
properties leads to an improved convergence speed.

This thesis exhibits a first step to numerical analysis of Stochastic Differ-
ential Algebraic Equations (SDAEs). But analytical positivity may only be
one geometric aspect of a stochastic process which should be preserved by
numerical approximation. The application in financial mathematics makes
perfectly clear that we have to pay attention to the analytical behaviour of a
stochastic process to get a proper numerical approximation. Thus the choice
of the right integration scheme is one essential part of the simulation.

After all it is a moot question whether it is possible to guarantee numerical
positivity for every positive stochastic process. Maybe this problem could be
solved by using integration schemes of higher order, stochastic Runge-Kutta
methods or multi-step schemes.



APPENDIX A

Stochastic analysis

The stochastic analysis is the mathematical base for a sensible modelling
of financial derivatives. The majority of results will be given without a
proof. Corresponding elucidations are in [Bau92, HT94, KS88, KT74, KT81,
Øks00].

Probability theory and stochastic processes

Definition A.1 Let Ω be given and F ⊂ Ω, then we call F a σ-algebra if
the following properties hold

(i) ∅ ∈ F ,

(ii) F ∈ F ⇒ F c ∈ F with F c = Ω \ F ,

(iii) F1, F2, ... ∈ F ⇒
⋃
i∈N

Fi ∈ F .

For an arbitrary family of subsets U ⊂ Ω a smallest σ-algebra HU exists
which includes all U

HU =
⋂
{H : H σ-algebra with U ⊂ H}.

This is the σ-algebra generated by U .

Definition A.2 The open subsets U ⊂ Ω generate a well known σ-algebra,
the Borel-algebra.

77
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We call (Ω,F) a measurable space. A probability measure on a measurable
space is a function

P : F −→ [0, 1],

so that the following holds:

1. P (Ω) = 1,

2. let F1, F2, ... ∈ F be a countable number of disjoint sets, then

P

(⋃
i

Fi

)
=
∑

i

P (Fi).

The triple (Ω,F , P ) is called a probability space.

We can interpret each element F ∈ F as one particular event. Hence the
probability measure P associates each event with a value in [0, 1]. This value
can be understood as the probability of that event.

Random variable is the next important concept.

Definition A.3 Let (Ω,F , P ) be a probability space.

X : Ω −→ Rn

is measurable with respect to F , if and only if

X−1(U) = {ω ∈ Ω : X(ω) ∈ U} ∈ F

holds for all Borel-sets U . X is called random variable.

In a natural way every random variable induces a probability measure µX on
Rn by

µX(B) = P (X−1(B)) , B Borel-set.

Thus µX is called the distribution of X.

Having two different measures on one single measurable space we could
ask if it is possible to transform one measures into the other. The Radon-
Nikodym theorem answers this question.

Theorem A.4 (Radon-Nikodym) Let P and Q be probability measures
on the σ-algebra (Ω,F) and let

P (B) = 0 ⇐⇒ Q(B) = 0,
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for every B ∈ F . Then a non-negative random variable Z exists, such that

(A.1) Q(A) =

∫
A

Z(ω)dP (ω) for all A ∈ F .

Z is called the Radon-Nikodym derivative from Q with respect to P .

The density p of a random variable is the unique Radon-Nikodym derivative
of the induced distribution µX of X w.r.t. the Lebesgue measure

µX(B) =

∫
B

p(x)dx.

Definition A.5 Let X be a random variable on a probability space (Ω,F , P ).
Then the expectation of X is defined by

(A.2) E [X] =

∫
Ω

X(ω)dP (ω) =

∫
Rn

xdµ(x) =

∫
Rn

xp(x)dx.

The expectation plays an important role in pricing financial derivatives. It
further holds for an arbitrary function f : Rn −→ R

E [f(X)] =

∫
Ω

f(X(ω))dP (ω) =

∫
Rn

f(x)dµ(x) =

∫
Rn

f(x)p(x)dx.

The variance V of a random variable is as important as the expectation:

V (X) = E
[
(X − E [X])2

]
= E

[
X2
]
− E [X]2 .

Therewith we have accumulated all required basics of probability theory.
Before analysing stochastic processes we study one example to illustrate the
concept of density.

Definition A.6 A normal distributed random variable X ∼ N (µ, σ2) on R
possesses the density

p(x) = (2πσ2)−1/2 exp

(
−(x− µ)2

2σ2

)
.

Hereby µ is the expectation and σ2 the variance (see fig. A.1).
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Figure A.1: Normal distribution: X ∼ N (0, σ2)

Definition A.7 A stochastic process is a quadruple (Ω,F , P, (Xt)t∈I) where
(Ω,F , P ) is a probability space and (Xt)t∈I is a family of random variables

(A.3) Xt : Ω → Rn

with I being [0,∞) in this thesis.

There are two ways of interpreting a stochastic process. On the one hand
the mapping

ω → Xt(ω)

is a random variable for fixed t . On the other hand for fixed ω the stochastic
process

t → Xt(ω)

defines a mapping from R to Rn. This map is called the path of a stochastic
process.

To adapt the concept of measurability to stochastic processes we have to
add a filtration to F .

Definition A.8 A filtration {Ft}t≥0 is a non-descending sequence of sub
σ-algebras such that

Fs ⊆ Ft ⊆ F for s ≤ t.
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Definition A.9 Let Ft be a filtration. Then a stochastic process Xt is called
adapted by Ft, if Xt is measurable w.r.t. Ft for all t ∈ I.

The measurability of stochastic processes becomes clear in context with con-
ditional expectation.

But we can also see it from a different point of view. Then a stochastic
process naturally induces a σ-algebra.

Definition A.10 Let Xt be a stochastic process. Then the σ-algebra FT

generated by (Xt)t∈I is the smallest σ-algebra containing all sets of the form

{ω : Xt1(ω) ∈ F1, ..., Xtn(ω) ∈ Fn}

where 0 ≤ tj ≤ T , j ≤ n = 1, 2, ... and Fj ⊂ Rn Borel-sets.

Actually this requires the definition of a product σ-algebra on Ω̃ =
(Rn)[0,T ]. The construction is rather complicated but the reader can find
a detailed description in [Par72].

Accordingly a stochastic process defines a filtration as

FS ⊆ FT with 0 ≤ S ≤ T.

It is also clear that every stochastic process Xt is adapted to its own filtration
Ft.

Another essential concept is the conditional expectation.

Definition A.11 (Conditional expectation) Let H ∈ F be a σ-algebra.
Then E [X|H] is the unique H measurable function with

(A.4)

∫
G

E [X|H] dx =

∫
G

Xdx for all G ∈ H.

The proof of uniqueness directly follows from the Radon-Nikodym theorem
(see equation A.1).

There is an easy interpretation of this abstract definition. For that reason
the σ-algebra H is a kind of information about the stochastic process which
will be explained by the following statements.
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Theorem A.12 Let X and Y be random variables and H a σ-algebra. Then

1. E [X + Y |H] = E [X|H] + E [Y |H],

2. E [X|H] = X if X is measurable w.r.t. H,

3. E [X|H] = E [X] if X is independent of H.

Proof: The proof can be found in [Øks00]. For detailed description about
conditional expectation see [Bau92]. �

Definition A.13 (Martingale) Let Xt be an Ft adapted stochastic pro-
cess. Then Xt is called a martingale if

(A.5) E [Xt|Fs] = Xs for all s ≤ t.

The martingale property of a stochastic process means that the process pos-
sesses a neutral behaviour concerning future events. Thus we can only state
as much about the process as there is information in the σ-algebra Fs.

Brownian motion and Ito-Calculus

One important stochastic process is the Brownian motion.

Definition A.14 Let Bt be an Ft adapted process. Then we call Bt a
Brownian motion if the following holds for all 0 ≤ s < t:

(i) B0 = 0,

(ii) Bt −Bs is independent of Fs,

(iii) Bt −Bs is N (0, t− s) distributed.

To get a clear picture of a Brownian motion figure A.2 illustrates the density
in the course of time t.

Corollary A.15 The Brownian motion Bt is a martingale with respect to
its own filtration Ft.

Proof: A simple calculation leads to

E [Bt|Fs] = E [Bs + Bt −Bs|Fs]

= E [Bs|Fs] + E [Bt −Bs|Fs] = Bs.
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Figure A.2: Brownian motion

The Brownian motion is a basic stochastic process. This raises the ques-
tion if it is possible to define more complex stochastic processes based on
a Brownian motion. Therefore we must regard stochastic processes from
another point of view, namely as the solution of stochastic differential equa-
tions.

Definition A.16 (Stochastic differential equation (SDE)) Let T > 0,
a : [0, T ]×R → R and b : [0, T ]×R → R. Then we call the following equation
a stochastic differential equation

(A.6) dXt = a(t,Xt)dt + b(t,Xt)dBt with Xt0 = x0.

The function a is the drift and b is the diffusion.

Remark A.17 If we define a stochastic process by an SDE then the process
starts at time t0 in x0. At t > t0 we can determine the density of the process
in x. This is called the transition density from (t0, x0) to (t, x)

(A.7) p(t0, t, x0, x)dx = P (Xt ∈ dx) = P (x < Xt < x + dx).

For calculating the expectation we also have to consider where the process
starts:

(A.8) Et0,x0 [Xt] = E [X|Xt0 = x0] .
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Two special cases of stochastic differential equations are already known.
Firstly with b = 0 it is an ordinary differential equation. Secondly with
a = 0 and b = 1 we get the SDE dXt = dBt with the obvious solution
Xt = Bt.

Here a questions comes up: How can we deal with the term dBt? To
handle this problem it is necessary to write the stochastic differential equation
as an integral equation and to define the Gaussian measure dBs

Xt = X0 +

t∫
0

a(s, Xs)ds +

t∫
0

b(s, Xs)dBs.

The integral
t∫

0

b(s, Xs)dBs

is a so-called stochastic integral. The idea of constructing such an integral
is similar to the construction of the Riemann-Stieltjes integral. It is not
possible to explain the whole theory of Ito integration here. Nevertheless
we will recapitulate some main results in short. For further reading see
[Arn73, Bog98, KS88, Øks00].

First of all we have to mention some facts about the Brownian motion.
To simplify the notation let J = [0, T ] be an interval. Further let P (J)N be
a partition of this interval

P (J)N = 0 = t0 < t1 < ... < tN = T

and PN is the set of all partitions of length N .

Proposition A.18 The following statements hold for the Brownian motion:

(A) the Brownian motion is not mean-square integrable,

(B) the paths are not differentiable w.r.t. P a. s.,

(C) the process possesses an unlimited variance on each bounded interval
J = [0, T ]

sup
N

sup
P (J)N∈PN

N−1∑
j=0

|Btj+1
−Btj | = ∞.



APPENDIX A. STOCHASTIC ANALYSIS 85

Proof: Verifying (A) needs only basic calculation

lim
h→0

E

[(
Bt+h −Bt

h

)2
]

= lim
h→0

1

h
= ∞.

The proof of (B) and (C) can be found in literature. �

Thus it is not possible to define the stochastic integral as an ordinary
Riemann-Stieltjes integral

T∫
0

b(s, Xs)dBs = lim
N→∞

∑
P (J)N∈PN
ξ∈[ti,ti+1]

b(ξ, Xξ)(Bti+1
−Bti).

To simplify the notation we define further:

SN :=
∑

P (J)N∈PN
ξ∈[ti,ti+1]

b(ξ, Xξ)(Bti+1
−Bti).

The mean-square convergence is denoted by

L2 − lim
N→∞

XN := lim
N→∞

E
[
(XN)2

]
.

The mean-square integrability is exactly an appropriate definition for the
stochastic integral. But there is still the problem that the integral strongly
depends on the choice of ξ ∈ [ti, ti+1]. In the case of Riemann-Stieltjes we
can take any value in the interval, here we have to fix the evaluation point ξ
to get a well defined integral. The following two choices have turned out to
be the most appropriate ones:

Definition A.19 (Ito integral) With ξ = tj (left point) we get the Ito
integral.

Definition A.20 (Stratonovich integral) Choosing ξ =
tj+tj+1

2
(center)

leads to the Stratonovich integral.

This enables us to define a stochastic integral as follows:

(A.9)

T∫
0

b(s, Xs)dBs = L2 − lim
N→∞

∑
P (I)N∈PN
ξ∈[ti,ti+1]

b(ξ, Xξ)(Bti+1
−Bti).
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It is not difficult to transform the Ito integral into the Stratonovich and
vice-versa. One important characteristic of the Ito integral is the martingale
property (see A.13 below). The big advantage of the Stratonovich integral is
that differentiating can be done in the usual way. Obviously not all functions
are integrable w.r.t dBs.

Definition A.21 The set of all Ito integrable functions is denoted by V =
V(0, T ). One element

(A.10) f(t, ω) : [0,∞)× Ω → R

is characterised by the following properties:

• (t, ω) → f(t, ω) is measurable w.r.t. B × F with B the Borel sets on
[0,∞).

• f(t, ω) is adapted by Ft.

• E

[
T∫
0

f(t, ω)2dt

]
< ∞.

Definition A.22 (Ito process) An Ito process is the stochastic process
which solves the stochastic differential equation

(A.11) dXt = a(t,Xt)dt + b(t,Xt)dBt with Xt0 = x0.

The existence of such a process requires b(t, ω) ∈ V and

P

 t∫
0

|a(s, ω)|ds < ∞ for all t ≥ 0

 = 1.

First we have a closer look at the properties of an Ito process.

Lemma A.23 (Ito isometry) Let f : [0,∞)× Ω :→ R ∈ V . Then

(A.12) E


 T∫

0

f(t, ω)dBt

2
 = E

 T∫
0

f 2(t, ω)dt

 .

In consideration of the Ito theorem (see A.25 below) the symbolic calculation
rule (dBt)

2 = dt seems sensible. In financial mathematics it is of great
importance that the Ito integral is a martingale.
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Lemma A.24 Let f(t, ω) ∈ V . Then the stochastic process Mt defined by

(A.13) Mt =

t∫
0

f(s, ω)dBs

is a martingale with respect to the filtration induced by Mt. So we get

(A.14) E

 t∫
0

f(s, ω)dBs

 = M0.

This behaviour can be condensed in the sentence:

An Ito integral does not anticipate future.

Although from a theoretical point of view these results are quite decisive
they cannot help how to construct a new stochastic process from a given one.
The fundamental theorem in Ito calculus helps.

Theorem A.25 (Ito’s theorem) Let Xt be an Ito process and g(t, x) ∈
C1×2([0,∞)× R). Then

Yt = g(t,Xt)

is again Ito process, and

(A.15) dg(t,Xt) =
∂g

∂t
(t,Xt)dt +

∂g

∂x
(t,Xt)dXt +

1

2

∂2g

∂x2
(t,Xt)(dXt)

2

holds with (dt)2 = dtdB = 0 and (dB)2 = dt.

Example A.26 Using Ito’s theorem enables us to calculate the integral

t∫
0

BsdBs.

Define g(t, x) = x2 and apply Ito’s theorem on Xt = Bt we easily verify

d(Bt)
2 = 2BtdBt + (dBt)

2

⇐⇒
t∫

0

BsdBs =
1

2

(
(Bt)

2 − t
)
.



APPENDIX A. STOCHASTIC ANALYSIS 88

There are only a few examples where the Ito integral has a closed solution.
One of these processes which are as elementary as important in financial
mathematics is the geometric Brownian motion as the solution of the follow-
ing stochastic differential equation

(A.16) dXt = αXtdt + βXtdBt with X0 = x.

Applying Ito’s theorem verifies the solution as

(A.17) Xt = x exp

((
α− β2

2

)
t + βBt

)
.

Starting with the density of the Brownian motion Bt we are able to calculate
the density of the geometric Brownian motion:

P (Bt −Bt0 ∈ db) =
1√

2π(t− t0)
exp

(
− b2

2(t− t0)

)
db, t > t0.

Now we choose a proper transformation according to the closed solution with
Xt0 = x:

y = x exp

((
α− β2

2

)
(t− t0) + βb

)
⇐⇒ b =

1

β

[
log
(y

x

)
−
(

α− β2

2

)
(t− t0)

]
.

Obviously we get

(A.18)
dy

db
= βy ⇐⇒ db =

dy

βy
.

After these preliminaries we only need to put the different pieces together:

P (Xt ∈ dy) =
1

βy
√

2π(t− t0)
·

exp

(
− 1

2β2(t− t0)

[
log
(y

x

)
−
(

α− β2

2

)
(t− t0)

]2
)

dy.
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Equity market

The modelling of stock prices is certainly the most natural connection be-
tween stochastic analysis and financial mathematics. Looking at a stock
chart (see fig. B.1) we recognise that it is unpredictable to a certain extent.

Figure B.1: DAX chart from 2001/05/06-2004/05/06.

That is exactly the phenomenon we want to describe with stochastic
analysis. Actually it is rather the target to obtain the fair value of a stock
option than predicting future. We start with the most simple kind of stock
option: the call.

89
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Definition B.1 (Call) A European call is a contract that allows the buyer
to acquire a particular share at a previously fixed price K (strike) on a fixed
date T in future.

Putting this definition into mathematical formulas leads to the following
payoff function at t = T (see fig. B.2)

C(T ) = max(S(T )−K, 0) = (S(T )−K)+.

Here ST is the share price at time t = T .

Figure B.2: Payoff function of a European call.

This provides the option price C(t) at T . But what is the fair price at
t ∈ [0, T )? To answer this question first of all we have to define what ”fair”
means in this context. The term ”arbitrage” answers this question.

Definition B.2 (Arbitrage) Arbitrage is the opportunity of drawing im-
mediately a riskless profit. When no instant riskless profit is possible we call
the market arbitrage-free.

The assumption of arbitrage-free markets is one of the most basic as-
sumptions we have in the pricing of derivatives.
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A financial investment at a fixed interest rate without risk of default is
the easiest way of investing risklessly. Certainly this is no arbitrage as the
profit is not immediately. Therefore the discount rate is given by

(B.1) D(t, T ) = exp

− T∫
t

r(τ)dτ

 .

Assuming we describe a stock with a stochastic process St with a starting
price St0 = s0, this stochastic process will be specified later on, the discounted
conditional expectation gives us the fair price of a European call

C(t, S) = Et0,s0
[
D(t, T )(ST −K)+|Ft

]
= Et,S(t)

[
D(t, T )(ST −K)+

]
.

So the option price agrees with the discounted profit expectation of the share.
This discounting makes our model arbitrage free.

Remark B.3 In general we can define any payoff function and get

(B.2) C(t, S) = Et,S(t)
[
D(t, T )f(ST )

]
.

Therewith we can formulate the following options:

f(x) =


(K − ST )+ : Put,

(K − ST )+ + (ST −K)+ : Straddle,

(K1 − ST )+ + (ST −K2)
+ : Strangle.

These are only a few possibilities. Actually there are multitudes of options.
In fact we can give our fancy full scope in constructing new options. See also
[GJ03, Nel96, Wil00a, Wil00b]. All options presented above have in common
that their payoff functions f depend on t = T . Needless to say that options
exist whose values depend on the stock prices S(t) with 0 ≤ t ≤ T , e. g. an
Asian option

C(T, S) =

 1

T

T∫
0

Sτdτ −K

+

.

We still have to face the question which stochastic process is capable
of modelling the stock chart. Here in particular it makes sense that the
stochastic process takes only positive values. Hence a geometric Brownian
motion, see also fig. B.3, seems to be appropriate. We have already proved
the non-negativity in Lemma 1.16.
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Figure B.3: Paths of the geometric Brownian motion.

Example B.4 (Black-Scholes) Let the stock prices be given by the fol-
lowing stochastic differential equation

(B.3) dSt = µStdt + σStdBt with St0 = s0.

One can construct the following self-financing portfolio Π consisting of shares
and options.

Π = ∆S − C(t, S).

An elaborate explanation about self-financing portfolios can be found in
[KK01]. Initially ∆ is a non-specified factor. Later on it becomes clear
why it is often called the hedge factor.
The next equation is not obvious. An exact derivation can be found in the
relevant literature

dΠ = ∆dS − dC(t, S).

Assuming an arbitrage-free market, the constructed portfolio is supposed to
gain as much profit as a riskless investment at rate r

dΠ = rΠdt.

This allows to equate the first differential equation to the second. We get

rΠdt = ∆dS − dC(t, S).



APPENDIX B. EQUITY MARKET 93

As the option price depends on time t as well as on the stock price S, we can
calculate the differential dC using Ito’s formula. This leads to:

rΠdt = ∆dS −
(

∂C

∂t
dt +

∂C

∂S
dS +

1

2

∂2C

∂S2
(dS)2

)
.

Employing dS, Π and (dS)2 = σ2S2dt we get

r(∆S − C)dt =

(
∆− ∂C

∂S

)
dS −

(
∂C

dt
+

1

2
σ2S2∂2C

∂S2

)
dt.

There is only one non-deterministic term left. But we can choose ∆ so that
we eliminate the risk completely:

(B.4) ∆ =
∂V

∂S
.

With this particular ∆ we achieve the Black-Scholes differential equation:

(B.5) − ∂C

∂t
= rS

∂C

∂S
+

1

2
σ2S2∂2C

∂S2
− rC.

The bottom line is that we can reach a closed solution of this equation if we
choose the geometric Brownian motion to model the stock chart. Transform-
ing the Black-Scholes differential equation into heat conduction equation is
one possible way of proceeding. In this case we use the corresponding argu-
mentation from the theory of partial differential equations.
But remembering the Feynman-Kac theorem provides a more elegant alter-
native. Using this theorem we see that the equation above is equivalent
to

(B.6) C(t, S) = Et,St

exp

− T∫
t

rdτ

 (ST −K)+


because the geometric Brownian motion has the appropriate generator. In-
deed a more intuitive point of view leads to the same result, see equation
(B.2). As we want to get an explicit formula we call back to mind the den-
sity of the geometric Brownian motion:

p(t, T, x, y) =
1

σy
√

2π
exp

(
− 1

2σ2(T − t)

[
log
(y

x

)
−
(

r − σ2

2

)
(T − t)

]2
)

.
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Additionally, we need the following notation

d(t)1/2 =
log(St

K
) + (r ± σ2/2)(T − t)

σ
√

(T − t)

and

(B.7) Φ(x) =
1√
2π

x∫
−∞

exp(−y2

2
)dy.

Having in mind the above we can examine the option price with only little
effort as a short calculation shows

C(t, S) = exp
(
− r(T − t)

)
Et0,s0

[
(ST −K)+|Ft

]
= D(t, T )Et,St

[
(ST −K)+

]
= D(t, T )

∫
R

(y −K)+p(t, T, St, y)dy

= StΦ(d(t)1)−D(t, T )KΦ(d(t)2).

Recapitulating the Black-Scholes formula leads to a closed solution for the
fair price of a call if we assume that the stock prices behave like a geometric
Brownian motion. But does this calculated price fit with the market prices?
There are still two questions: how can we compare prices and (if they do not
fit) how can we extend the model so that it replicates the market prices?

Implied volatility and model extension

In the Black-Scholes model there are some parameters we can directly get
from the market. That is current price, duration, strike and to a certain
extent interest rate as well. But how can we determine the volatility of a
share? One approach is to refer to historical volatility.

Definition B.5 The historical volatility is defined by

(B.8) σhist =
√

N

(
1

N − 1

N∑
i=1

(yi − ȳ)2

)1/2

.

In this case N is the number of days, yi = ln(Si+1)−ln(Si) where Si describes
the stock price at time i and ȳ denominates the average over yi.
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On the other hand the market provides call prices. Thus we can use the
adapted Black-Scholes formula to calculate the volatility the market expects.
That is why this kind of volatility is called implied. It is an enormous ad-
vantage that prices become comparable by implied volatilities.
Comparing implied volatilities in respect of different maturities and strikes
we obtain the volatility surface.

There is still the second question we must find an answer to: How can
the model be extended to achieve a better adjustment to market data? A
whole string of modifications has been developed:

1. Stochastic Volatilities,

2. Non-lognormal Distribution,

3. Jump Diffusion.

These extensions make it possible to reproduce volatility surfaces. The pa-
rameters can be validated with market data. So we use the basic derivatives
(e.g. put and call) to identify the parameters of the accordant model. There-
fore we should choose a model that allows a fast calculation of plain vanilla
prices. Once we know the parameters the model can be used to price other
options as well.
This is usually the point when numerics comes into play. A schema of this
procedure could be

1. Model set up (stochastic volatility, jump diffusion, etc.),

2. Parameter Estimation (fitting the model to market data),

3. Numerical Simulation.
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