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Lab Exercises for Numerical Analysis and Simulation I:
ODEs

Laboratory 2 - Runge-Kutta-Fehlberg

Presentation of exercises: 24. - 28. 11.2014

Each working group (1-3 persons) shall present and explain their programmes. Please contact
Igor Kossaczky (kossaczky@math.uni-wuppertal.de) for a date arrangement.

In this exercise, you should write a MATLAB-routine to solve the initial value problem (IVP)
y'(@)=fz,y@), y@) =y (:R->R" f:RxR"=>R")

numerically in some interval x € [zg, Zenq|. For this purpose, use the embedded Runge-Kutta-
Fehlberg scheme of order 2(3)

3 4
Y1 :yo+hzbiki and 11 :yo-i-hzih'ki

=1 i=1
with increments
i—1
ki=f xO"‘Cih,yO‘l-hZCLijkj for 1 =1,...,4.
j=1

The coefficients of this explicit method read:

C1 0
C2 a1 1/4 1/4
€3 | a31  a32 o 27/40 | -189/800 729/800
Cq4 aql a492 a43 1 214/891 1/33 650/891
by by bs 214/891  1/33  650/891
by by b3 by 533/2106 0 800/1053 -1/78

Remark that it holds ¢4 = 1 and a4; = b; for 7 = 1,2,3. The approximation y; shall be the
initial value of the next step if the current step is accepted. This means, one function evaluation
of f can be saved in case of an accepted step. Include this strategy in your implementation.
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Task 1: Implement a MATLAB M-file with the following input and output arguments:

function [x,y,istat,idid] = rkf23(fname,xspan,y0,rtol,atol,h0,const)
% Runge-Kutta-Fehlberg 2(3)
%

% Input parameters:

% fname name of right-hand side f

% Xspan vector [x0,xend]

% yo intial value (dimension nx*1)
% rtol relative tolerance

% atol absolute tolerance

% ho initial step size

% const = use step size control

yA = 1: use constant step size hO

h

% Output parameters:

%X vector with points of independent variable
%oy matrix with approximations at points x
istat statistics

istat = [number of evaluations of right-hand side f,
number of accepted steps, number of rejected steps ]

]
—

xend was reached
step size too small

idid

1]
o

The method should be implemented including step size control (which can be turned off with
the flag const=1). For that, use the estimated local error

e:=y; —in = O(Rh®)
and the formula for step size prediction

s/ 1

hopt = hused . m

with the error norm

1< €; 2
ERR := | — E - h = , ny
n (atol Yz rtol> ,  where zj := max {[yo|, [y1,[}

Consequently, the step is accepted if ERR < 1 holds.

Include the safety factor p = 0.9 for scaling the resulting hopt and bounds 6 = 5, 0 = 0.2 for
increasing/decreasing the step size to avoid oscillating behavior (cf. lecture notes).

If the step size becomes smaller than Ay, := 1075, integration shall be terminated with the
according information in idid.
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Task 2: MATLAB provides already built-in one-step solvers with step size prediction.
Have a look in the MATLAB documentation to get familiar with the routines ode23 and ode45.
Its options can be set via the command odeset.

Remarks:

e All built-in MATLAB routines are documented. You can have a look at the documentation
via the commands doc or help, e.g. with help ode23.

e The dimension n of the ODE system can be determined inside rkf23 by the initial vector
yO using the command length or size.

e FEach right-hand side f has to be implemented in an own M-file fname.m as a function of
the form: function f = fname(x,y).

e The evaluation of the varying function fname inside rkf23 can be done using the command
feval, for example via: f = feval(fname,x,y).

e If the right-hand side f is given in the file fname.m, then the integrator is called by:
[...]=rkf23(@fname,...) or [...]=rkf23(’fname’,...).

e The size of the output parameters x and y is not known a priori. The vector and the matrix
can be enlarged in each step. However, this extension may take a long time for larger sizes.
At the beginning, fix x and y using the command zeros to a maximum number of steps,
say 10000. Cut off the unused part at the end of the integration.

For further information on the lab exercises, see:
http://www-num.math.uni-wuppertal.de/en/amna/teaching/lectures/

lab-exercises-for-numerical-analysis—-and-simulation-i-odes.html
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Test examples:

a)

b)

Scalar ODE

The initial value problem

/ Yy _
y(z) = m, y(zo) = o

exhibits the exact solution

y(:v) =y - earctan(x)—arctan(xo)‘
Solve the problem in the interval z € [—10,20] with initial condition y(—10) = 1. Apply
a step size control with the initial step size hg = 1. Choose the fixed absolute tolerance
atol = 1079, whereas the relative tolerances rtol = 10~ for [ = 4,6 should be applied.
Have a look at the statistics: how many function evaluations are needed?
Try also the methods ode23 and ode45 as well as the method with constant step sizes in
the case h = 0.1. Compare the seven numerical approximations to the exact solution.

Van-der-Pol Oscillator
The second order ODE
y' =null -y —y
describes the Van-der-Pol Oscillator. Apply the equivalent system of first order. Consider
the initial values y(0) = 2, ¢/(0) = 0.

Let atol = rtol = 1072, hg = 1072 and zenq = 30 be fixed. Solve the IVP for the different
parameters p = 1,10, 100 with rkf23 and discuss the development of the solution and the
step size control. Try also the methods ode23 and ode45.

Three-body problem

We consider a three-body problem with the earth, the moon and a satellite in a two-
dimensional space (£1,&2). The unknowns are the position and velocity of the satellite:
y1:=&1,y2 = &, y3 := &), ya := &, The system of ODEs reads

yll(x) = Y3

yé(x) = Y4 1
yé(l’) = y1 +2ys — (1 _ ,U) yl%‘# _ Iuyl—rg-&-y
yf;(l’) = y2—2ys— (1 — ,U)% _ M%

with the parameter u = ﬁ and

ro=V W+ )2+ 2=V (0 — 1+ p)? 4y

Solve the system with the initial values

y(0) = (1.2,0,0, —1.049358) "

in the time interval x € [0,7] with 7" := 6.1921693. Thereby, select the initial step size
ho = T/1500. Apply constant step sizes as well as step size control with the tolerances
rtol = atol = 107°. Plot the resulting satellite’s orbits in (&;,&2) phase diagrammes.
Compare the results of the two simulations.



