Prof. Dr. Michael Günther Zuzana Bučková, M.Sc.
Dmitry Shcherbakov, M.Sc. Dipl. Math. Michèle Wandelt, M.Sc. Winter Term 2014/15

Numerical Analysis and Simulation I: Ordinary Differential Equations (ODEs)

Sheet 14 - Repetition 2

Exercise 31: Multi-step schemes
We consider the scalar initial value problem $y^{\prime}=f(x, y), y\left(x_{0}\right)=y_{0}(y: \mathbb{R} \rightarrow \mathbb{R})$. Furthermore, an equidistant grid $x_{j}=j h, y_{j} \doteq y\left(x_{j}\right)$ for $j \in \mathbb{N}$ is used.
a) Determine the order of consistency for the BDF2 method

$$
\frac{3}{2} y_{j+1}-2 y_{j}+\frac{1}{2} y_{j-1}=h f\left(x_{j+1}, y_{j+1}\right) .
$$

Show additionally that the method is stable.

Reminder:
The consistency conditions for a general k-step scheme

$$
\sum_{l=0}^{k} \alpha_{l} y_{i+l}=h \sum_{l=0}^{k} \beta_{l} f\left(x_{i+l}, y_{i+l}\right)
$$

read

$$
\begin{array}{rlr}
\sum_{l=0}^{k} \alpha_{l}=0 \quad \text { and } \quad \sum_{l=0}^{k}\left(\alpha_{l} l-\beta_{l}\right)=0 & \text { for order } 1 \\
\sum_{l=1}^{k} \alpha_{l} l^{q}=q \sum_{l=1}^{k} \beta_{l} l^{q-1} & \text { for } q=2, \ldots, p .
\end{array}
$$

b) Is the multi-step method given by

$$
\frac{1}{2} y_{j+1}-2 y_{j}+\frac{3}{2} y_{j-1}=-h f\left(x_{j-1}, y_{j-1}\right)
$$

consistent, stable and/or convergent? What is the connection to part (a)?

Exercise 32: Solutions of Linear DAEs. (part 2)
Determine the solution of the following linear systems of DAEs (with non-constant matrices) Investigate which initial values $y\left(x_{0}\right)=y_{0}$ are feasible.
Hint: Observe the two equations of each system. Try to eliminate one unknown (y_{1} or y_{2}) to obtain a scalar ODE, which is solved analytically.
a) $\left(\begin{array}{cc}0 & 0 \\ 1 & -x\end{array}\right)\binom{y_{1}^{\prime}}{y_{2}^{\prime}}+\left(\begin{array}{cc}1 & -x \\ 0 & 0\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{\sin (x)}{\cos (x)}$
b) $\left(\begin{array}{cc}-x & x^{2} \\ -1 & x\end{array}\right)\binom{y_{1}^{\prime}}{y_{2}^{\prime}}+\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{y_{1}}{y_{2}}=\binom{0}{0}$

Exercise 33: Space for Additional Questions

