Numerical Analysis and Simulation I: Ordinary Differential Equations (ODEs)

Sheet 10 - Geometric Integrators and Stochastic Differential Equations

Return of the Exercise Sheet: Tuesday, January 13th before the lecture

Exercise 21: Toda-Flow with Matrix-Differential Equation

We consider the solution of the matrix differential equation

$$
Q^{\prime}=Q \cdot B, \quad \text { with } Q(0)=I
$$

where $B \in \mathbb{R}^{m \times m}$ is a skew-symmetric matrix, i.e. $B^{T}=-B$ (and I is the identity map of \mathbb{R}^{m}). Furthermore, let $\left\{Q_{n}\right\}_{n=0}^{\infty}$ be the numerical approximation produced by an Runge-Kutta scheme.
Now, prove the following: If the RK-coefficients fulfill

$$
m_{i j}=b_{i} a_{i j}+b_{j} a_{j i}-b_{i} b_{j}=0 \quad \text { for } 1 \leq i, j \leq s,
$$

then Q_{n} is orthogonal (i.e. $Q_{n} \cdot Q_{n}^{T}=I=Q_{n}^{T} \cdot Q_{n}$) for all $n \geq 0$.
Hint:

- use the internal stages $U_{i}=Q_{n}+h \sum_{j=1}^{s} a_{i j} K_{j}$ with $K_{i}=U_{i} \cdot B$ to set up the Runge-Kutta scheme
- prove $Q_{n} Q_{n}^{\top}=I$ by induction over $l \geq 0$:
- start with the base case $l=0$ inductive step
- inductive step $n \mapsto n+1$:
use the Runge-Kutta approximation for Q_{n+1}, replace Q_{n} in a second step and combine the coefficients
- deduce from this result $Q_{n}^{\top} Q_{n}=I$

Exercise 22: Stochastic Differential Equation
Let X_{t} be an Itô-process, satisfying

$$
d X_{t}=\mu X_{t} d t+\sigma X_{t} d W_{t}
$$

We define a new stochastic process by $Y_{t}:=X_{t}^{\alpha}, \alpha \in \mathbb{R}$.
Determine the stochastic differential equation (SDE) for Y_{t}.

Homework 19: Determinant as First Integral
Consider the quasi-linear problem

$$
Y^{\prime}=A(Y) \cdot Y, \quad Y(0)=Y_{0}
$$

with Y and $A(Y)$ being matrices of size $n \times n$. If the trace of $A(Y)$ is equal to zero, it can be shown that the determinant is an invariant of the matrix differential equation $Y^{\prime}=A(Y) \cdot Y$.
a) Let $g(Y):=\operatorname{det} Y$ be the determinant of Y. Show that the Abel-Liouville-Jacobi-Ostrosgraskii identity

$$
g^{\prime}(Y) \cdot A(Y) \cdot Y=\operatorname{trace} A(Y) \cdot \operatorname{det} Y
$$

is fulfilled if $\operatorname{trace} A(Y)=0$ for all Y.

Hint: Start with the development of a Taylor series of Y around $x_{0}=0$ and then use the Laplace expansion theorem.
b) Prove that the determinant is a first integral of the matrix differential equation $Y^{\prime}=A(Y) Y$ if trace $A(Y)=0$ for all Y.

Homework 20: Wiener-Process
(10 Points)
Let W_{t} be a Wiener-process. Show that it holds

$$
E\left(W_{t}^{4}\right)=3 t^{2}
$$

Hint: Use the lemma of Itô on $Z_{t}=W_{t}^{4}$. Moreover, it holds $\int_{0}^{t} W_{\tau}^{3} d W_{\tau}=0$.

