Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 2023
5087.
Günther, Michael; Sandu, Adrian; Schäfers, Kevin; Zanna, Antonella
Symplectic GARK methods for partitioned Hamiltonian systems
20235086.
Schäfers, Kevin; Günther, Michael; Sandu, Adrian
Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems
Preprint
20235085.
Schäfers, Kevin; Günther, Michael; Sandu, Adrian
Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems
Preprint
20235084.
Ehrhardt, Matthias
Use of Interference Patterns to Control Sound Field Focusing in Shallow Water
Journal of Marine Science and Engineering, 11 (3) :559
2023
Publisher: MDPI5083.
Schäfers, Kevin; Günther, Michael; Sandu, Adrian
Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems
20235082.
Braun, Feodor; Jaschinski, M.; Kirsch, Stefan F.; Schomäcker, Klaus
Synthesis and evaluation of radioiodinated estrogens for diagnosis and therapy of male urogenital tumours
Organic & Biomolecular Chemistry, 2023 (21) :3090-3095
2023
Publisher: RSC
ISSN: 1477-05395081.
Relton, Samuel D.; Schweitzer, Marcel
Structured level-2 condition numbers of matrix functions
20235080.
Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the Lp-sense
Preprint
20235079.
[en] Hehnen, Tristan; Arnold, Lukas
PMMA pyrolysis simulation – from micro- to real-scale
Fire Safety Journal, 141
December 2023
ISSN: 037971125078.
Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the $L^p$-sense
20235077.
Abdul Halim, Adila; others
Constraints on upward-going air showers using the Pierre Auger Observatory data
PoS, ICRC2023 :1099
20235076.
Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Convergence of linking Durrmeyer type modifications of generalized Baskakov operators
Bulletin of the Malaysian Math. Sciences Society, 46 (3)
20235075.
Jacob, Birgit; Mironchenko, Andrii; Partington, Jonathan R.; Wirth, Fabian
Corrigendum: Noncoercive Lyapunov functions for input-to-state stability of infinite-dimensional systems
SIAM J. Control Optim., 61 (2) :723-724
20235074.
Aerdker, S.; others
CRPropa 3.2: a public framework for high-energy astroparticle simulations
PoS, ICRC2023 :1471
20235073.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
arXiv preprint arXiv:2301.03924
20235072.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Publisher: Elsevier5071.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Publisher: Elsevier5070.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Publisher: Elsevier5069.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep finite difference method for solving Asian option pricing problems
Preprint IMACM
2023
Publisher: Bergische Universität Wuppertal5068.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep finite difference method for solving Asian option pricing problems
Preprint IMACM
2023
Publisher: Bergische Universität Wuppertal5067.
Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear Backward Stochastic Differential Equations
Discrete Contin. Dyn. Syst. - B
2023
ISSN: 1531-34925066.
Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete Contin. Dyn. Syst. - B
20235065.
Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the Lp-sense
Preprint
20235064.
Yue, Baobiao; others
Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger Observatory
PoS, ICRC2023 :1095
20235063.
Abdul Halim, Adila; others
Deep-Learning-Based Cosmic-Ray Mass Reconstruction Using the Water-Cherenkov and Scintillation Detectors of AugerPrime
PoS, ICRC2023 :371
2023