Applied and Computational Mathematics (ACM)

Model Order Reduction

Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.

Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.

Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.

In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.

Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:

  • How do varying parameters influence certain performances ?
    Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit.
  • Is a system stable?
    Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected
  • How do coupled subproblems interact?
    Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?

Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.

Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.

MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.

The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.

Current research topics include:

  • MOR for nonlinear, parameterized problems
  • structure preserving MOR
  • MOR for Differential Algebraic Equations
  • MOR in financial applications, i.e., option prizing

Group members working on that field

  • Jan ter Maten
  • Roland Pulch

Publications



4830.

Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems
2024

4829.

Bartel, A.; Diab, M.; Frommer, A.; G\"unther ; Marheineke, N.
Splitting Techniques for DAEs with port-Hamiltonian Applications
2024

4828.

Ehrhardt, Matthias
Ein einfaches Kompartment-Modell zur Beschreibung von Revolutionen am Beispiel des Arabischen Frühlings
2024

4827.

Antunes, Carlos Henggeler; Fonseca, Carlos M.; Paquete, Luís; Stiglmayr, Michael
Special issue on exact and approximation methods for mixed-integer multi-objective optimization
Mathematical Methods of Operations Research
August 2024
Publisher: Springer Science and Business Media LLC
ISSN: 1432-5217

4826.

Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes.
2024

4825.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195-208
July 2024
ISSN: 0898-1221

4824.

Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems
Jpn. J. Ind. Appl. Math.
2024

4823.

Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Commutativity and spectral properties for a general class of Szasz-Mirakjan-Durrmeyer operators
2024

4822.

Vorberg, Lukas; Jacob, Birgit; Wyss, Christian
Computing the Quadratic Numerical Range
Journal of Computational and Applied Mathematics :116049
2024

4821.

Klamroth, Kathrin; Stiglmayr, Michael; Totzeck, Claudia
Consensus-Based Optimization for Multi-Objective Problems: A Multi-Swarm Approach
Journal of Global Optimization
2024

4820.

Clément, François; Doerr, Carola; Klamroth, Kathrin; Paquete, Luís
Constructing Optimal Star Discrepancy Sets
2024

4819.

Günther, M.; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Math. Control Signals Syst.
2024

4818.

Kapllani, Lorenc; Teng, Long
Deep learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete and continuous dynamical systems - B, 29 (4) :1695–1729
2024
Publisher: AIMS Press

4817.

Fasi, Massimiliano; Gaudreault, Stéphane; Lund, Kathryn; Schweitzer, Marcel
Challenges in computing matrix functions
2024

4816.

Ackermann, Julia; Jentzen, Arnulf; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for space-time solutions of semilinear partial differential equations
arXiv:2406.10876 :64 pages
2024

4815.

Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluids, 36 (3)
2024
Publisher: AIP Publishing

4814.

Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness WENO method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluid, 36 (3) :036603
2024
Publisher: AIP Publishing

4813.

Stiglmayr, Michael; Uhlemeyer, Svenja; Uhlemeyer, Björn; Zdrallek, Markus
Determining Cost-Efficient Controls of Electrical Energy Storages Using Dynamic Programming
Journal of Mathematics in Industry
2024

4812.

Ehrhardt, M.; Kruse, T.; Tordeux, A.
Dynamics of a Stochastic port-{H}amiltonian Self-Driven Agent Model in One Dimension
ESAIM: Math. Model. Numer. Anal.
2024

4811.

Wiebel, Michelle; Bensberg, Kathrin; Wende, Luca; Grandrath, Rebecca; Plitzko, Kathrin; Bohrmann-Linde, Claudia; Kirsch, S. F.; Schebb, Nils Helge
Efficient and Simple Extraction Protocol for Triterpenic Acids from Apples
Journal of Chemical Education, 101 :2087-2093
April 2024
Publisher: ACS

4810.

Santos, Daniela Scherer; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Ensuring connectedness for the Maximum Quasi-clique and Densest $k$-subgraph problems
2024

4809.

Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195–208
2024
Publisher: Pergamon

4808.

Bailo, Rafael; Barbaro, Alethea; Gomes, Susana N.; Riedl, Konstantin; Roith, Tim; Totzeck, Claudia; Vaes, Urbain
CBX: Python and Julia packages for consensus-based interacting particle methods
2024

4807.

Gaul, Daniela
Exact and Heuristic Methods for Dial-a-Ride Problems
Dissertation
Dissertation
Bergische Universität Wuppertal
2024

4806.

Hoang, Manh Tuan; Ehrhardt, Matthias
A second-order nonstandard finite difference method for a general Rosenzweig-MacArthur predator--prey model
Journal of Computational and Applied Mathematics :115752
2024
Publisher: Elsevier

More information about #UniWuppertal: