Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 2023
4705.
Alameddine, Jean-Marco; others
Simulations of cross media showers with CORSIKA 8
PoS, ICRC2023 :442
20234704.
Wintermayr, Jens; Kerner, Joachim; Täufer, Matthias
Robustness of Flat Bands on the Perturbed Kagome and the Perturbed Super-Kagome Lattice
Annales Henri Poincare :19
December 20234703.
Thielmann, Oliver
Search for flavour-changing neutral current interactions in the top-quark Higgs boson sector in multi-lepton final states with the ATLAS detector at the LHC at $\sqrt{s} = 13\,\text{TeV}$
Bergische Universität Wuppertal
20234702.
Alameddine, Jean-Marco; others
Simulating radio emission from air showers with CORSIKA 8
PoS, ICRC2023 :425
20234701.
Schweitzer, Marcel
Sensitivity of matrix function based network communicability measures: Computational methods and a priori bounds
SIAM J. Matrix Anal. Appl., 44 (3) :1321-1348
20234700.
Schweitzer, Marcel
Sensitivity of matrix function based network communicability measures: Computational methods and a priori bounds
SIAM J. Matrix Anal. Appl., 44 (3) :1321-1348
20234699.
Aad, Georges; others
Search for pair-produced scalar and vector leptoquarks decaying into third-generation quarks and first- or second-generation leptons in pp collisions with the ATLAS detector
JHEP, 2306 :188
20234698.
Abdul Halim, Adila; others
Search for Ultra-high-energy Photons from Gravitational Wave Sources with the Pierre Auger Observatory
Astrophys. J., 952 (1) :91
20234697.
Abdul Halim, Adila; others
Search for primary photons at tens of PeV with the Pierre Auger Observatory
PoS, ICRC2023 :238
20234696.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems--a sensitivity-based approach
arXiv preprint arXiv:2301.02019
20234695.
Kapllani, Lorenc; Teng, Long; Rottmann, Matthias
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
Submitted to SIAM-ASA J. Uncertain. Quantif.
20234694.
Studies on the improvement of the matching uncertainty definition in top-quark processes simulated with Powheg+Pythia 8
CERN, Geneva
20234693.
Pereselkov, Sergey; Kuz’kin, Venedikt; Ehrhardt, Matthias; Tkachenko, Sergey; Rybyanets, Pavel; Ladykin, Nikolay
Three-dimensional modeling of sound field holograms of a moving source in the presence of internal waves causing horizontal refraction
Journal of Marine Science and Engineering, 11 (10) :1922
2023
Publisher: MDPI4692.
Jendoubi, Oussama
Vergleich der magnetischen Streufeldwerte eines induktiven geladenen Taxis zwischen Simulation und Messung im Rahmen des TALAKO-Projekts
20234691.
Pereselkov, Sergey; Kuz’kin, Venedikt; Ehrhardt, Matthias; Tkachenko, Sergey; Rybyanets, Pavel; Ladykin, Nikolay
Use of interference patterns to control sound field focusing in shallow water
Journal of Marine Science and Engineering, 11 (3) :559
2023
Publisher: MDPI4690.
Pereselkov, Sergey; Kuz’kin, Venedikt; Ehrhardt, Matthias; Tkachenko, Sergey; Rybyanets, Pavel; Ladykin, Nikolay
Use of Interference Patterns to Control Sound Field Focusing in Shallow Water
Journal of Marine Science and Engineering, 11 (3) :559
2023
Publisher: MDPI4689.
Pereselkov, Sergey; Kuz’kin, Venedikt; Ehrhardt, Matthias; Tkachenko, Sergey; Rybyanets, Pavel; Ladykin, Nikolay
Use of Interference Patterns to Control Sound Field Focusing in Shallow Water
Journal of Marine Science and Engineering, 11 (3) :559
2023
Publisher: MDPI4688.
Abdul Halim, Adila; others
Update on the Offline Framework for AugerPrime and production of reference simulation libraries using the VO Auger grid resources
PoS, ICRC2023 :248
20234687.
Dobrick, Alexander; Hölz, Julian
Uniform convergence of solutions to stochastic hybrid models of gene regulatory networks
20234686.
Kapllani, Lorenc; Teng, Long; Rottmann, Matthias
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
20234685.
Dobrick, Alexander; Hölz, Julian; Kunze, Markus
Ultra Feller operators from a functional analytic perspective
20234684.
David, Amelie; Stroka, Steven; Haussmann, Norman; Schmülling, Benedikt; Clemens, Markus
Überprüfung der elektromagnetischen Umweltverträglichkeit bei induktiver Ladung
In Proff, Heike and Clemens, Markus and Marrón, Pedro J. and Schmülling, Benedikt, Editor
Page 143-180
Publisher: Springer Fachmedien Wiesbaden, Wiesbaden
2023
143-1804683.
Akramov, ME; Yusupov, JR; Ehrhardt, Matthias; Susanto, H; Matrasulov, DU
Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters, Section A, 459 :128611
2023
Publisher: North-Holland4682.
Akramov, ME; Yusupov, JR; Ehrhardt, M; Susanto, H; Matrasulov, DU
Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters A :128611
2023
Publisher: North-Holland4681.
Akramov, ME; Yusupov, JR; Ehrhardt, M; Susanto, H; Matrasulov, DU
Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters A :128611
2023
Publisher: North-Holland