Applied and Computational Mathematics (ACM)

Multirate

Highly integrated electric cicuits show a phenomenon called latency. That is, a processed signal causes activity only in a small subset of the whole circuit (imagine a central processing unit), whereas the other part of the system behaves almost constant over some time - is latent. Such an electric system can be described as coupled system, where the waveforms show different time scales, also refered to as multirate.

More generally, any coupled problem formulation due to coupled physical effects, may cause a multirate problem: image the simulation of car driving on the road, there you need a model for the wheel, the chassis, the dampers, the road,... (cf. co-simulation). Again each system is covered by their own time constant, which might vary over several orders of magnitude comparing different subsystems.

Classical methods cannot exploit this multirate potential, but resolve everything on the finest scale. This causes an over sampling of the latent components. In constrast, Co-simulation or especially dedicated multirate methods are designed to use the inherent step size to resolve the time-domain behaviour of each subystem with the required accuracy. This requires a time-stepping for each.

Group members working in that field

  • Andreas Bartel
  • Michael Günther

Former and ongoing Projects

  • CoMSON
  • ICESTARS
  • 03GUNAVN

Cooperations

Publications



6945.

Hendricks, C; Ehrhardt, M; Günther, M
High order tensor product interpolation in the Combination Technique
preprint, 14 :25

6944.

Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Page 388

6943.

Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Page 388

6942.

Ambartsumyan, I; Khattatov, E; Yotov, I; Zunino, P; Arnold, Anton; Ehrhardt, Matthias; Ashyralyev, Allaberen; Csom{\'o}s, Petra; Farag{\'o}, Istv{\'a}n; Fekete, Imre; others
Invited Papers

6941.

Ehrhardt, Matthias; Farkas, Bálint; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas
Operator Splitting and Multirate Schemes

6940.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Publisher: Springer

6939.

Ehrhardt, Matthias; Günther, Michael; Brunner, H
Mathematical Study of Grossman's model of investment in health capital

6938.

Ehrhardt, Matthias; Farkas, B{\'a}lint; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas
Operator Splitting and Multirate Schemes
2024

6937.

[german] Zeller, Diana; Bohrmann-Linde, Claudia
Falschinformationen in Videos? Mit dem Konzept KriViNat die Kompetenz der Informationsbewertung stärken
In Bohrmann-Linde, C.; Gökkus, Y.; Meuter, N.; Zeller, D., Editor, Volume Netzwerk Digitalisierter Chemieunterricht. Sammelband NeDiChe-Treff 2022
Page 9-15
Publisher: Chemiedidaktik. Bergische Universität Wuppertal
2024
9-15

6936.

Arslan, Bahar; Relton, Samuel D.; Schweitzer, Marcel
Structured level-2 condition numbers of matrix functions
Electron. J. Linear Algebra, 40 :28-47
2024

6935.

Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
arXiv preprint arXiv:2401.17954
2024

6934.

Santos, Daniela Scherer; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Solving the multiobejctive quasi-clique problem
2024

6933.

[english] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Simple biofuel cells: the superpower of baker’s yeast
Science in School - The European journal for science teachers, 66
2024

6932.

Frommer, Andreas; Ramirez-Hidalgo, Gustavo; Schweitzer, Marcel; Tsolakis, Manuel
Polynomial preconditioning for the action of the matrix square root and inverse square root
2024

6931.

Erbay, Mehmet; Jacob, Birgit; Morris, Kirsten
On the Weierstraß form of infinite dimensional differential algebraic equations
2024

6930.

Bolten, Matthias; Doganay, Onur Tanil; Gottschalk, Hanno; Klamroth, Kathrin
Non-convex shape optimization by dissipative {H}amiltonian flows
Engineering Optimization
2024

6929.

Allmendinger, Richard; Fonseca, Carlos M.; Sayin, Serpil; Wiecek, Margaret M.; Stiglmayr, Michael
Multiobjective Optimization on a Budget (Dagstuhl Seminar 23361)
2024
Publisher: Schloss Dagstuhl – Leibniz-Zentrum für Informatik

6928.

Jamil, Hamza
Intrusive and non-intrusive uncertainty quantification methodologies for pyrolysis modeling
Fire Safety Journal, 143 :104060
2024
ISSN: 0379-7112

6927.

Erbay, Mehmet; Jacob, Birgit; Morris, Kirsten; Reis, Timo; Tischendorf, Caren
Index concepts for linear differential-algebraic equations in finite and infinite dimensions
2024

6926.

Song, Yongcun; Wang, Ziqi; Zuazua, Enrique
FedADMM-InSa: An Inexact and Self-Adaptive ADMM for Federated Learning
2024

6925.

Santos, Daniela Scherer; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Ensuring connectedness for the Maximum Quasi-clique and Densest $k$-subgraph problems
2024

6924.

Rohde, Martin; Burgmann, Sebastian; Janoske, Uwe
The impact of a two-dimensional vibration excitation on the critical incident flow velocity of a sessile droplet
International Journal of Multiphase Flow, 171 :104663
2024
Publisher: Pergamon

6923.

Ehrhardt, M.; Kruse, T.; Tordeux, A.
Dynamics of a Stochastic port-{H}amiltonian Self-Driven Agent Model in One Dimension
ESAIM: Math. Model. Numer. Anal.
2024

6922.

Stiglmayr, Michael; Uhlemeyer, Svenja; Uhlemeyer, Björn; Zdrallek, Markus
Determining Cost-Efficient Controls of Electrical Energy Storages Using Dynamic Programming
Journal of Mathematics in Industry
2024

6921.

Clément, François; Doerr, Carola; Klamroth, Kathrin; Paquete, Luís
Constructing Optimal ${L}_{\infty}$ Star Discrepancy Sets
2024

Weitere Infos über #UniWuppertal: