Coupled DAE Problems
Coupled Problems of differential-algebraic equations (DAEs) arise typically from either multiphysical modeling (e.g. in circuit simulation with heating) or from refined modeling, where crucial parts of the original problem are replaced by a better, but computational more expensive model (e.g. circuits refined by field models). Furthermore splitting methods may turn a monolithic DAE problem into coupled subproblems, e.g. because of different time scales (multirate). In any case the DAEs arise from network approaches or space-discretization of PDAEs (Partial Differential Algebraic Equations).
Often the coupled equations have quite different properties, i.e., symmetries, definiteness or time scales. Thus the coupled system must be analyzed (e.g. the index) and tailored methods have to be developed (e.g. dynamic iteration).
Details
Publications
- 2023
4605.
Bohrmann-Linde, Claudia; Siehr, Ilona
Chemie Qualifikationsphase Nordrhein-Westfalen
Publisher: C.C.Buchner Verlag, Bamberg
2023ISBN: 978-3-661-06002-6
4604.
Albrecht, Johannes; others
Comparison and efficiency of GPU accelerated optical light propagation in CORSIKA\textasciitilde{}8
PoS, ICRC2023 :417
20234603.
Carrillo, Jose Antonio; Totzeck, Claudia; Vaes, Urbain
Consensus-based Optimization and Ensemble Kalman Inversion for Global Optimization Problems with Constraints
, Modeling and Simulation for Collective Dynamics,Lecture Notes Series, Institute for Mathematical Sciences, NUS Volume 40
20234602.
Morejon, Leonel; Kampert, Karl-Heinz
Implementing hadronic interactions in CRPropa to study bursting sources of UHECRs
PoS, ICRC2023 :285
20234601.
Poggi, Aurora; Di Persio, Luca; Ehrhardt, Matthias
Electricity price forecasting via statistical and deep learning approaches: The German case
AppliedMath, 3 (2) :316–342
2023
Publisher: Multidisciplinary Digital Publishing Institute4600.
Jacob, Birgit; Zwart, Hans
Infinite-dimensional linear port-Hamiltonian systems on a one-dimensional spatial domain: An Introduction
20234599.
Heldmann, Fabian; Berkhahn, Sarah; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
arXiv preprint arXiv:2302.01810
June 20234598.
Kraus, Konstantin; Klamroth, Kathrin; Stiglmayr, Michael
On the online path extension problem -- Location and routing problems in board games
20234597.
Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Accepted at Numerische Mathematik
20234596.
Bartel, A.; Günther, M.; Jacob, Birgit; Reis, T.
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Numer. Math., 155 (1-2) :1-34
20234595.
Bartel, Andreas; Günther, Michael; Jacob, Birgit; Reis, Timo
Operator splitting based dynamic iteration for linear differential-algebraic port-Hamiltonian systems
Numerische Mathematik, 155 (1-2) :1–34
2023
Publisher: Springer New York4594.
Farkas, Bálint; Jacob, Birgit; Reis, Timo; Schmitz, Merlin
Operator splitting based dynamic iteration for linear infinite-dimensional port-Hamiltonian systems
20234593.
Frommer, Andreas; Günther, Michael; Liljegren-Sailer, Björn; Marheineke, Nicole
Operator splitting for port-Hamiltonian systems
arXiv preprint arXiv:2304.01766
20234592.
Bartel, Andreas; Diab, Malak; Frommer, Andreas; Günther, Michael
Operator splitting for semi-explicit differential-algebraic equations and port-Hamiltonian DAEs
Preprint
20234591.
Doganay, Onur Tanil; Klamroth, Kathrin; Lang, Bruno; Stiglmayr, Michael; Totzeck, Claudia
Optimal control for port-Hamiltonian systems and a new perspective on dynamic network flow problems
20234590.
Klamroth, Kathrin; Stiglmayr, Michael; Sudhoff, Julia
Ordinal optimization through multi-objective reformulation
European Journal of Operational Research, 311 (2) :427-443
2023
ISSN: 0377-22174589.
Hutzenthaler, Martin; Jentzen, Arnulf; Kruse, Thomas; Anh Nguyen, Tuan
Overcoming the curse of dimensionality in the numerical approximation of backward stochastic differential equations
Journal of Numerical Mathematics, 31 (1) :1–28
2023
Publisher: De Gruyter4588.
Alves, A. Augusto; others
Parallel processing of radio signals and detector arrays in CORSIKA 8
PoS, ICRC2023 :469
20234587.
Schweitzer, Marcel
Integral representations for higher-order Frechet derivatives of matrix functions: Quadrature algorithms and new results on the level-2 condition number
Linear Algebra Appl., 656 :247-276
20234586.
Heldmann, Fabian; Berkhahn, Sarah; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
Journal of Computational Physics, 488 :112211
2023
Publisher: Academic Press4585.
Farkas, Bálint; Jacob, Birgit; Schmitz, Merlin
On exponential splitting methods for semilinear abstract Cauchy problems
Integral Equations and Operator Theory, 95 :Paper No. 15
20234584.
[en] Hehnen, Tristan; Arnold, Lukas
PMMA pyrolysis simulation – from micro- to real-scale
Fire Safety Journal, 141
December 2023
ISSN: 037971124583.
Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Poisson approximation to the binomial distribution: extensions to the convergence of positive operators
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117
20234582.
Bartel, Andreas; Clemens, Markus; Günther, Michael; Jacob, Birgit; Reis, Timo
Port-{H}amiltonian Systems Modelling in Electrical Engineering
arXiv preprint arXiv:2301.02024
20234581.
Jacob, Birgit; Totzeck, Claudia
Port-Hamiltonian structure of interacting particle systems and its mean-field limit
2023