Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 1999
845.
Becker, Karl Heinz; Dinis, Carlos M.; Geiger, Harald; Wiesen, Peter
Kinetics of the reaction of OH with di-n-butoxymethane (DBM) in the range 298-710 K
Chemical Physics Letters, 300 (3-4) :460-464
1999844.
Becker, Karl Heinz; Dinis, Carlos M.; Geiger, Harald; Wiesen, Peter
Kinetics of the reaction of OH with di-n-butoxymethane (DBM) in the range 298-710 K
Chemical Physics Letters, 300 (3-4) :460-464
1999843.
Foster, Krishna L.; Lakin, M. J.; Caldwell, Tracy E.; Hemminger, John C.; Benter, Thorsten; Finlayson-Pitts, Barbara J.
Laboratory studies of model sea-salt aerosols with HOCl.
Abstracts of Papers of The Americal Chemical Society, 217 (1) :U109
1999842.
Foster, Krishna L.; Lakin, M. J.; Caldwell, Tracy E.; Hemminger, John C.; Benter, Thorsten; Finlayson-Pitts, Barbara J.
Laboratory studies of model sea-salt aerosols with HOCl.
Abstracts of Papers of The Americal Chemical Society, 217 (1) :U109
1999841.
Foster, Krishna L.; Lakin, M. J.; Caldwell, Tracy E.; Hemminger, John C.; Benter, Thorsten; Finlayson-Pitts, Barbara J.
Laboratory studies of model sea-salt aerosols with HOCl.
Abstracts of Papers of The Americal Chemical Society, 217 (1) :U109
1999840.
Korn, S.; Eisel, C.; Schmitz, R.-P.; Tausch, Michael W.
Licht - die vergessene Energieform oder chemische Licht - Spiele in 6 Akten'', Multimedia CD mit Materialien für den Unterricht
Online
1999839.
Jacob, Birgit
Linear quadratic optimal control of time-varying systems with indefinite costs on Hilbert spaces
Math. Control Signals Systems, 12 (2) :196--218
1999838.
[english] Eisel, Christian; Tausch, Michael W.
Molecular hydrogen from hydrochloric acid and copper under UV light irradiation
Journal of Photochemistry and Photobiology A: Chemistry, 128 (1-3) :151--154
1999
Herausgeber: Elsevier {BV}837.
Becker, Karl Heinz; L{ö}rzer, Jutta C.; Kurtenbach, Ralf; Wiesen, Peter; Jensen, T. E.; Wallington, T. J.
Nitrous oxide (N\(_{2}\)O) emissions from vehicles
Environmental Science and Technology, 33 (22) :4134-4139
1999836.
Becker, Karl Heinz; L{ö}rzer, Jutta C.; Kurtenbach, Ralf; Wiesen, Peter; Jensen, T. E.; Wallington, T. J.
Nitrous oxide (N\(_{2}\)O) emissions from vehicles
Environmental Science and Technology, 33 (22) :4134-4139
1999835.
Becker, Karl Heinz; Lörzer, Jutta C.; Kurtenbach, Ralf; Wiesen, Peter; Jensen, T. E.; Wallington, T. J.
Nitrous oxide (N2O) emissions from vehicles
Environmental Science and Technology, 33 (22) :4134-4139
1999834.
Jensen, Per; Bunker, Philip R.
Nuclear spin statistical weights revisited
Molecular Physics, 97 (6) :821-824
1999833.
Jensen, Per; Bunker, Philip R.
Nuclear spin statistical weights revisited
Molecular Physics, 97 (6) :821-824
1999832.
Jensen, Per; Bunker, Philip R.
Nuclear spin statistical weights revisited
Molecular Physics, 97 (6) :821-824
1999831.
Gilg, A.; Günther, M.
Numerical Circuit Simulation
Survey on Mathematics for Industry, 8 :165–169
1999
Herausgeber: Springer Verlag830.
Gilg, A
Numerical circuit simulation
SURVEYS ON MATHEMATICS FOR INDUSTRY, 8 :165--169
1999
Herausgeber: SPRINGER-VERLAG829.
Maten, E. J. W.
Numerical methods for frequency domain analysis of electronic circuits
Surveys on Mathematics for Industry, 8 :171-185
1999828.
Günther, Michael; Hoschek, M.
Partitioning strategies in circuit simulation
In Bungartz, Hans-Joachim and Durst, Franz and Zenger, Christoph, Editor, High Performance Scientific and Engineering ComputingBand8ausLecture Notes in Computational Science and Engineering, Seite 343–352
In Bungartz, Hans-Joachim and Durst, Franz and Zenger, Christoph, Editor
Herausgeber: Springer Berlin Heidelberg
1999827.
Günther, Michael; Hoschek, Markus
Partitioning strategies in circuit simulation
In H.-J. Bungartz and F. Durst and Chr. Zenger, Editor, High Performance Scientific and Engineering Computing: Proceedings of the International FORTWIHR Conference on HPSEC, Munich, March 16-18, 1998Band8ausLecture Notes in Computational Science and Engineering, Seite 343--352
Springer Berlin Heidelberg
In H.-J. Bungartz and F. Durst and Chr. Zenger, Editor
Herausgeber: Springer Verlag
1999826.
Günther, M.; Rentrop, P.
PDAE-Netzwerkmodelle in der elektrischen Schaltungssimulation
In John, W., Editor, Analog '99 : 5. ITG/GMM-Diskussionssitzung Entwicklung von Analogschaltungen mit CAE-Methoden mit dem Schwerpunkt Entwurfsmethodik und parasitäre Effekte, Seite 31–38
In John, W., Editor
Herausgeber: FhG IZM - Advanced System Engineering Paderborn
1999825.
Günther, Michael; Rentrop, Peter
PDAE-Netzwerkmodelle in der elektrischen Schaltungssimulation [PDAE networkmodels in electric switching simulation]
1999824.
Langer, U; Rienen, U van
Resume of the collection of articles on scientific computing in electrical engineering
Surveys on Mathematics for Industry, 9 (2) :151--154
1999
Herausgeber: Wien; New York: Springer-Verlag, 1991-c2005.823.
Kevenaar, T.A.M.; Maten, E.J.W.
RF IC simulation: state-of-the-art and future trends
International Conference on Simulation of Semiconductor Processes and Devices. {SISPAD}{\textquotesingle}99 ({IEEE} Cat. No.99TH8387), Seite 7-10
Herausgeber: Japan Soc. Appl. Phys
1999822.
Günther, M.; Hoschek, M.
ROW-type integration methods for circuit simulation packages
In Arkeryd, Leif and Berg, Jöran and Brenner, Philip and Pettersson, Rolf, Editor
Seite 448–455
Herausgeber: B.G. Teubner, Stuttgart
1999
448–455821.
Fateev, A. A.; Fink, Ewald H.; Pravilov, A. M.
Simple method of spectrometer/detector sensitivity calibrations in the 210-1150 nm range
Measurement Science and Technology, 10 (3) :182-189
1999