Model Order Reduction
Model Order Reduction (MOR) is the art of reducing a system's complexity while preserving its input-output behavior as much as possible.
Processes in all fields of todays technological world, like physics, chemistry and electronics, but also in finance, are very often described by dynamical systems. With the help of these dynamical systems, computer simulations, i.e. virtual experiments, are carried out. In this way, new products can be designed without having to build costly prototyps.
Due to the demand of more and more realistic simulations, the dynamical systems, i.e., the mathematical models, have to reflect more and more details of the real world problem. By this, the models' dimensions are increasing and simulations can often be carried out at high computational cost only.
In the design process, however, results are needed quickly. In circuit design, e.g., structures may need to be changed or parameters may need to be altered, in order to satisfy design rules or meet the prescribed performance. One cannot afford idle time, waiting for long simulation runs to be ready.
Model Order Reduction allows to speed up simulations in cases where one is not interested in all details of a system but merely in its input-output behavior. That means, considering a system, one may ask:
- How do varying parameters influence certain performances ?
Using the example of circuit design: How do widths and lengths of transistor channels, e.g., influence the voltage gain of a circuit. - Is a system stable?
Using the example of circuit design: In which frequency range, e.g., of voltage sources, does the circuit perform as expected - How do coupled subproblems interact?
Using the example of circuit design: How are signals applied at input-terminals translated to output-pins?
Classical situations in circuit design, where one does not need to know internals of blocks are optimization of design parameters (widths, lengths, ...) and post layout simulations and full system verifications. In the latter two cases, systems of coupled models are considered. In post layout simulations one has to deal with artificial, parasitic circuits, describing wiring effects.
Model Order Reduction automatically captures the essential features of a structure, omitting information which are not decisive for the answer to the above questions. Model Order reduction replaces in this way a dynamical system with another dynamical system producing (almost) the same output, given the same input with less internal states.
MOR replaces high dimensional (e.g. millions of degrees of freedom) with low dimensional (e.g. a hundred of degrees of freedom ) problems, that are then used instead in the numerical simulation.
The working group "Applied Mathematics/Numerical Analysis" has gathered expertise in MOR, especially in circuit design. Within the EU-Marie Curie Initial Training Network COMSON, attention was concentrated on MOR for Differential Algebraic Equations. Members that have been working on MOR in the EU-Marie Curie Transfer of Knowledge project O-MOORE-NICE! gathered knowledge especially in the still immature field of MOR for nonlinear problems.
Current research topics include:
- MOR for nonlinear, parameterized problems
- structure preserving MOR
- MOR for Differential Algebraic Equations
- MOR in financial applications, i.e., option prizing
Group members working on that field
- Jan ter Maten
- Roland Pulch
Publications
- 2023
4680.
Bülow, Friedrich; Hahn, Yannik; Meyes, Richard; Meisen, Tobias; others
Transparent and Interpretable State of Health Forecasting of Lithium-Ion Batteries with Deep Learning and Saliency Maps
International Journal of Energy Research, 2023
2023
Herausgeber: Hindawi4679.
[english] Rendon-Enriquez, Ibeth; Palma-Cando, Alex; Körber, Florian; Niebisch, Felix; Forster, Michael; Tausch, Michael W.; Scherf, Ullrich
Thin Polymer Films by Oxidative or Reductive Electropolymerization and Their Application in Electrochromic Windows and Thin-Film Sensors
molecules, 28 (2) :883
Januar 20234678.
Bolten, Matthias; Donatelli, M.; Ferrari, P.; Furci, I.
Symbol based convergence analysis in block multigrid methods with applications for Stokes problems
Appl. Numer. Math., 193 :109-130
20234677.
Guerreiro, Andreia P.; Klamroth, Kathrin; Fonseca, Carlos M.
Theoretical aspects of subset selection in multi-objective optimization
In Brockhoff, D. and Emmerich, M. and Naujoks, B. and Purshouse, R., Editor aus Natural Computing Series
Seite 213--239
Herausgeber: Springer
2023
213--2394676.
Alameddine, Jean-Marco; others
The particle-shower simulation code CORSIKA 8
PoS, ICRC2023 :310
20234675.
Meinert, Janning; Morej\'on, Leonel; Sandrock, Alexander; Eichmann, Björn; Kreidelmeyer, Jonas; Kampert, Karl-Heinz
The impact of a modified CMB photon density on UHECR propagation
PoS, ICRC2023 :322
20234674.
Lund, Kathryn; Schweitzer, Marcel
The Frechet derivative of the tensor t-function
Calcolo, 60
20234673.
Lund, Kathryn; Schweitzer, Marcel
The Frechet derivative of the tensor t-function
Calcolo, 60 :35
20234672.
Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The Collective Dynamics of a Stochastic Port-Hamiltonian Self-Driven Agent Model in One Dimension
arXiv preprint arXiv:2303.14735
20234671.
Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The Collective Dynamics of a Stochastic Port-Hamiltonian Self-Driven Agent Model in One Dimension
arXiv preprint arXiv:2303.14735
20234670.
Bolten, Matthias; Friedhoff, S.; Hahne, J.
Task graph-based performance analysis of parallel-in-time methods
Parallel Comput., 118 :103050
20234669.
Synthesis and evaluation of radioiodinated estrogens for diagnosis and therapy of male urogenital tumours
Organic & Biomolecular Chemistry, 2023 (21) :3090-3095
2023
Herausgeber: RSC
ISSN: 1477-05394668.
Schäfers, Kevin; Günther, Michael; Sandu, Adrian
Symplectic multirate generalized additive Runge-Kutta methods for Hamiltonian systems
20234667.
Günther, Michael; Sandu, Adrian; Schäfers, Kevin; Zanna, Antonella
Symplectic GARK methods for partitioned Hamiltonian systems
20234666.
Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
Symbol based convergence analysis in multigrid methods for saddle point problems
Linear Algebra Appl., 671 :67--108
20234665.
Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
Symbol based convergence analysis in multigrid methods for saddle point problems
Linear Algebra Appl., 671 :67--108
20234664.
[en] Börger, Kristian; Belt, Alexander; Schultze, Thorsten; Arnold, Lukas
Remote Sensing of the Light-Obscuring Smoke Properties in Real-Scale Fires Using a Photometric Measurement Method
Fire Technology
September 2023
ISSN: 0015-2684, 1572-80994663.
Heldmann, Fabian; Berkhahn, Sarah; Ehrhardt, Matthias; Klamroth, Kathrin
PINN training using biobjective optimization: The trade-off between data loss and residual loss
arXiv preprint arXiv:2302.01810
20234662.
Göhring, Timo
Ratio of Electron and Muon Pair Production at High Invariant Mass in Association with a b-jet
20234661.
Yusupov, JR; Ehrhardt, Matthias; Matyokubov, Kh Sh; Matrasulov, DU
Driven transparent quantum graphs
Preprint arXiv
20234660.
Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Convergence of linking Durrmeyer type modifications of generalized Baskakov operators
Bulletin of the Malaysian Math. Sciences Society, 46 (3)
20234659.
Jacob, Birgit; Mironchenko, Andrii; Partington, Jonathan R.; Wirth, Fabian
Corrigendum: Noncoercive Lyapunov functions for input-to-state stability of infinite-dimensional systems
SIAM J. Control Optim., 61 (2) :723-724
20234658.
Aerdker, S.; others
CRPropa 3.2: a public framework for high-energy astroparticle simulations
PoS, ICRC2023 :1471
20234657.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
arXiv preprint arXiv:2301.03924
20234656.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier