Applied and Computational Mathematics (ACM)

Index Analysis

DAEs are no ODEs. Actually, Differential agebraic equations (DAEs) are a mixture of ordinary differential equations (ODEs) and algebraic relations. This may create difficulties, which are not seen at the first sight. The analysis shows that due this mixture hidden differentiation might occur. Recalling from analysis that differentiation is not an unbounded operator, such a process is much more difficult to handle than the integrals used for solving ODEs. E.g. imagine a sinosoidal signal of small amplitude but with high frequency, such as a numerical error, the derivative is of much larger magnitude.

Clearly, the more derivatives involved in the exact solution of a DAE, the more one needs to be careful in numerical computations. The index is a measure for this difficutly. That is why it is important to know the index before simulation.

Group members working on that field

  • Andreas Bartel
  • Michael Günther

 

Cooperations

  • Giuseppe Ali (Academia)
  • Sascha Baumanns (Academia)
  • Caren Tischendorf (Academia)

Publications



2024

5212.

Vinod, Vivin; Zaspel, Peter
Investigating Data Hierarchies in Multifidelity Machine Learning for Excitation Energies
2024

5211.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Reducing Obizhaeva-Wang-type trade execution problems to LQ stochastic control problems
Finance and Stochastics, 28 (3) :813–863
2024
Herausgeber: Springer Verlag

5210.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Self-exciting price impact via negative resilience in stochastic order books
Annals of Operations Research, 336 (1) :637–659
2024
Herausgeber: Springer Netherlands

5209.

Ackermann, Julia; Kruse, Thomas; Urusov, Mikhail
Self-exciting price impact via negative resilience in stochastic order books
Annals of Operations Research, 336 (1) :637–659
2024
Herausgeber: Springer Netherlands

5208.

Andersen, Kim Allan; Boomsma, Trine Krogh; Efkes, Britta; Forget, Nicolas
Sensitivity Analysis of the Cost Coefficients in Multiobjective Integer Linear Optimization
Management Science
2024

5207.

[english] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Simple biofuel cells: the superpower of baker’s yeast
Science in School - The European journal for science teachers, 66
Februar 2024

5206.

Palitta, Davide; Schweitzer, Marcel; Simoncini, Valeria
Sketched and truncated polynomial Krylov methods: Evaluation of matrix functions
Numer. Linear Algebra Appl.
2024

5205.

Kruse, Thomas; Strack, Philipp
Optimal dynamic control of an epidemic
Operations Research, 72 (3) :1031–1048
2024
Herausgeber: INFORMS

5204.

Kruse, Thomas; Strack, Philipp
Optimal dynamic control of an epidemic
Operations Research, 72 (3) :1031–1048
2024
Herausgeber: INFORMS

5203.

Lorenz, Jan; Zwerschke, Tom; Schaefers, Kevin
Operator splitting for coupled linear port-Hamiltonian systems
2024

5202.

Schultes, Johanna
Multiobjective optimization of shapes using scalarization techniques
Dissertation
Dissertation
Bergische Universität Wuppertal
2024

5201.

Botchev, M. A.; Knizhnerman, L. A.; Schweitzer, M.
Krylov subspace residual and restarting for certain second order differential equations
SIAM J. Sci. Comput., 46 (2) :S223-S253
2024

5200.

Hastir, Anthony; Jacob, Birgit; Zwart, Hans
Linear-Quadratic optimal control for boundary controlled networks of waves
2024

5199.

Xu, Zhuo; Tucsnak, Marius
LQR control for a system describing the interaction between a floating solid and the surrounding fluid
Mathematical Control and Related Fields, 14(4) :1477-1500
Dezember 2024

5198.

Costa, G Morais Rodrigues; Ehrhardt, Matthias
Mathematical analysis and a nonstandard scheme for a model of the immune response against COVID-19
Band 793
Seite 251–270
Herausgeber: AMS Contemporary Mathematics
2024
251–270

5197.

Costa, G Morais Rodrigues; Ehrhardt, Matthias
Mathematical analysis and a nonstandard scheme for a model of the immune response against COVID-19
Band 793
Seite 251–270
Herausgeber: AMS Contemporary Mathematics
2024
251–270

5196.

Bolten, Matthias; Kilmer, Misha E.; MacLachlan, Scott
Multigrid preconditioning for regularized least-squares problems
SIAM J. Sci. Comput., 46 (5) :s271—s295
2024
ISSN: 1064-8275

5195.

Allmendinger, Richard; Fonseca, Carlos M.; Sayin, Serpil; Wiecek, Margaret M.; Stiglmayr, Michael
Multiobjective Optimization on a Budget (Dagstuhl Seminar 23361)
2024
Herausgeber: Schloss Dagstuhl – Leibniz-Zentrum für Informatik

5194.

Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
On some Cauchy problems and positive linear operators
Mediterranean Journal of Mathematics, accepted
2024

5193.

Bolten, Matthias; Doganay, Onur Tanil; Gottschalk, Hanno; Klamroth, Kathrin
Non-convex shape optimization by dissipative {H}amiltonian flows
Engineering Optimization
2024

5192.

Bolten, M.; Doganay, O. T.; Gottschalk, H.; Klamroth, K.
Non-convex shape optimization by dissipative Hamiltonian flows
Eng. Optim. :1—20
2024

5191.

Bauß, Julius
On improvements of multi-objective branch and bound
Dissertation
Dissertation
Bergische Universität Wuppertal
2024

5190.

Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems
Jpn. J. Ind. Appl. Math.
2024
2023

5189.

Haussmann, N.; Stroka, S.; Mazaheri, S.; Clemens, M.
Using Point Clouds for Material Properties Smoothing in Low-Frequency Numerical Dosimetry Simulations
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, South Korea
Dezember 2023

5188.

Kähne, B.; Clemens, M.
A GPU Accelerated Semi-Implicit Method for Large-Scale Nonlinear Eddy-Current Problems Using Adaptive Time Step Control
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, South Korea
Dezember 2023

Weitere Infos über #UniWuppertal: