Index Analysis
DAEs are no ODEs. Actually, Differential agebraic equations (DAEs) are a mixture of ordinary differential equations (ODEs) and algebraic relations. This may create difficulties, which are not seen at the first sight. The analysis shows that due this mixture hidden differentiation might occur. Recalling from analysis that differentiation is not an unbounded operator, such a process is much more difficult to handle than the integrals used for solving ODEs. E.g. imagine a sinosoidal signal of small amplitude but with high frequency, such as a numerical error, the derivative is of much larger magnitude.
Clearly, the more derivatives involved in the exact solution of a DAE, the more one needs to be careful in numerical computations. The index is a measure for this difficutly. That is why it is important to know the index before simulation.
Group members working on that field
- Andreas Bartel
- Michael Günther
Cooperations
- Giuseppe Ali (Academia)
- Sascha Baumanns (Academia)
- Caren Tischendorf (Academia)
Publications
- 2024
5300.
Vinod, Vivin; Zaspel, Peter
Benchmarking Data Efficiency in Δ-ML and Multifidelity Models for Quantum Chemistry.
20245299.
Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE-Fortbildungsreihe für Lehrkräfte und Studierende in der Didaktik der Chemie
Herausgeber: Gemeinsamer Studienausschuss (GSA) in der School of Education an der Bergischen Universität Wuppertal
Newsletter Lehrer*innenbildung an der Bergischen Universität Wuppertal
Juli 20245298.
Klass, Friedemann; Bartel, Andreas; Gabbana, PD Alessandro
Boundary conditions for multi-speed lattice Boltzmann methods
20245297.
Bailo, Rafael; Barbaro, Alethea; Gomes, Susana N.; Riedl, Konstantin; Roith, Tim; Totzeck, Claudia; Vaes, Urbain
CBX: Python and Julia Packages for Consensus-Based Interacting Particle Methods
Journal of Open Source Software, 9 (98) :6611
2024
Herausgeber: The Open Journal5296.
Fasi, Massimiliano; Gaudreault, Stéphane; Lund, Kathryn; Schweitzer, Marcel
Challenges in computing matrix functions
20245295.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195–208
2024
Herausgeber: Pergamon5294.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195-208
Juli 2024
ISSN: 0898-12215293.
Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems
Jpn. J. Ind. Appl. Math.
20245292.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Commutativity and spectral properties for a general class of Szasz-Mirakjan-Durrmeyer operators
Advances in Operator Theory, 10 (1) :14
20245291.
Vorberg, Lukas; Jacob, Birgit; Wyss, Christian
Computing the Quadratic Numerical Range
Journal of Computational and Applied Mathematics :116049
20245290.
Klamroth, Kathrin; Stiglmayr, Michael; Totzeck, Claudia
Consensus-Based Optimization for Multi-Objective Problems: A Multi-Swarm Approach
Journal of Global Optimization
20245289.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Mathematics of Control, Signals, and Systems, 36 (4) :957–977
2024
Herausgeber: Springer London5288.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Mathematics of Control, Signals, and Systems, 36 (4) :957–977
2024
Herausgeber: Springer London5287.
Günther, M.; Jacob, B.; Totzeck, C.
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Math. Control Signals Syst., 36 :957–977
20245286.
Günther, M.; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Math. Control Signals Syst.
20245285.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes
Preprint
20245284.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes
Preprint
20245283.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes.
20245282.
Kapllani, Lorenc; Teng, Long
Deep learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete and continuous dynamical systems - B, 29 (4) :1695–1729
2024
Herausgeber: AIMS Press5281.
Ackermann, Julia; Jentzen, Arnulf; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for space-time solutions of semilinear partial differential equations
arXiv:2406.10876 :64 pages
20245280.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluids, 36 (3)
2024
Herausgeber: AIP Publishing5279.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness WENO method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluid, 36 (3) :036603
2024
Herausgeber: AIP Publishing5278.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness WENO method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluid, 36 (3) :036603
2024
Herausgeber: AIP Publishing5277.
Stiglmayr, Michael; Uhlemeyer, Svenja; Uhlemeyer, Björn; Zdrallek, Markus
Determining Cost-Efficient Controls of Electrical Energy Storages Using Dynamic Programming
Journal of Mathematics in Industry
20245276.
Ehrhardt, M.; Kruse, T.; Tordeux, A.
Dynamics of a Stochastic port-{H}amiltonian Self-Driven Agent Model in One Dimension
ESAIM: Math. Model. Numer. Anal.
2024