Index Analysis
DAEs are no ODEs. Actually, Differential agebraic equations (DAEs) are a mixture of ordinary differential equations (ODEs) and algebraic relations. This may create difficulties, which are not seen at the first sight. The analysis shows that due this mixture hidden differentiation might occur. Recalling from analysis that differentiation is not an unbounded operator, such a process is much more difficult to handle than the integrals used for solving ODEs. E.g. imagine a sinosoidal signal of small amplitude but with high frequency, such as a numerical error, the derivative is of much larger magnitude.
Clearly, the more derivatives involved in the exact solution of a DAE, the more one needs to be careful in numerical computations. The index is a measure for this difficutly. That is why it is important to know the index before simulation.
Group members working on that field
- Andreas Bartel
- Michael Günther
Cooperations
- Giuseppe Ali (Academia)
- Sascha Baumanns (Academia)
- Caren Tischendorf (Academia)
Publications
- 2023
5112.
Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Poisson approximation to the binomial distribution: extensions to the convergence of positive operators
Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat., 117
20235111.
Ehrhardt, Matthias
Use of interference patterns to control sound field focusing in shallow water
Journal of Marine Science and Engineering, 11 (3) :559
2023
Herausgeber: MDPI5110.
Ehrhardt, Matthias
Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters, Section A, 459 :128611
2023
Herausgeber: North-Holland5109.
Transparent boundary conditions for the nonlocal nonlinear Schrödinger equation: A model for reflectionless propagation of PT-symmetric solitons
Physics Letters A :128611
2023
Herausgeber: North-Holland5108.
David, Amelie; Stroka, Steven; Haussmann, Norman; Schmülling, Benedikt; Clemens, Markus
Überprüfung der elektromagnetischen Umweltverträglichkeit bei induktiver Ladung
In Proff, Heike and Clemens, Markus and Marrón, Pedro J. and Schmülling, Benedikt, Editor
Seite 143-180
Herausgeber: Springer Fachmedien Wiesbaden, Wiesbaden
2023
143-1805107.
Dobrick, Alexander; Hölz, Julian; Kunze, Markus
Ultra Feller operators from a functional analytic perspective
20235106.
Kapllani, Lorenc; Teng, Long; Rottmann, Matthias
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
Submitted to SIAM-ASA J. Uncertain. Quantif.
20235105.
Kapllani, Lorenc; Teng, Long; Rottmann, Matthias
Uncertainty quantification for deep learning-based schemes for solving high-dimensional backward stochastic differential equations
20235104.
Dobrick, Alexander; Hölz, Julian
Uniform convergence of solutions to stochastic hybrid models of gene regulatory networks
20235103.
Lund, Kathryn; Schweitzer, Marcel
The Frechet derivative of the tensor t-function
Calcolo, 60 :35
20235102.
Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The Collective Dynamics of a Stochastic Port-Hamiltonian Self-Driven Agent Model in One Dimension
arXiv preprint arXiv:2303.14735
20235101.
Schäfers, Kevin; Bartel, Andreas; Günther, Michael; Hachtel, Christoph
Spline-oriented inter/extrapolation-based multirate schemes of higher order
Applied Mathematics Letters, 136 :108464
2023
Herausgeber: Pergamon5100.
Studies on the improvement of the matching uncertainty definition in top-quark processes simulated with Powheg+Pythia 8
CERN, Geneva
20235099.
Clemens, Markus; Günther, Michael
Stability of Transient Coupled Multi-Model Discrete Electromagnetic Field Formulations Using the Port-Hamiltonian System Framework
2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Seite 1–1
Herausgeber: IEEE
20235098.
Clemens, Markus; Günther, Michael
Stability of Transient Coupled Multi-Model Discrete Electromagnetic Field Formulations Using the Port-Hamiltonian System Framework
2023 International Conference on Electromagnetics in Advanced Applications (ICEAA), Seite 1–1
Herausgeber: IEEE
20235097.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta-Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics, 193 :196–203
2023
Herausgeber: North-Holland5096.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta-Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics, 193 :196–203
2023
Herausgeber: North-Holland5095.
Abdul Halim, Adila; others
Update on the Offline Framework for AugerPrime and production of reference simulation libraries using the VO Auger grid resources
PoS, ICRC2023 :248
20235094.
Muniz, Michelle; Ehrhardt, Matthias; Günther, Michael; Winkler, Renate
Strong stochastic Runge-Kutta–Munthe-Kaas methods for nonlinear Itô SDEs on manifolds
Applied Numerical Mathematics
2023
ISSN: 0168-92745093.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems - a sensitivity-based approach
20235092.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Structure-preserving identification of port-Hamiltonian systems--a sensitivity-based approach
arXiv preprint arXiv:2301.02019
20235091.
Bolten, Matthias; Donatelli, M.; Ferrari, P.; Furci, I.
Symbol based convergence analysis in block multigrid methods with applications for Stokes problems
Appl. Numer. Math., 193 :109-130
20235090.
Bolten, Matthias; Friedhoff, S.; Hahne, J.
Task graph-based performance analysis of parallel-in-time methods
Parallel Comput., 118 :103050
20235089.
Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
Symbol based convergence analysis in multigrid methods for saddle point problems
Linear Algebra Appl., 671 :67--108
20235088.
Bolten, Matthias; Donatelli, Marco; Ferrari, Paola; Furci, Isabella
Symbol based convergence analysis in multigrid methods for saddle point problems
Linear Algebra Appl., 671 :67--108
2023