Applied and Computational Mathematics (ACM)

Dynamic Iteration Schemes

Dynamic iteration via source coupling

Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.

For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.

To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.

Group members working on that field

  • Andreas Bartel
  • Michael Günther

Former and ongoing Projects

Cooperation

Publications



2025

5400.

Kiesling, Elisabeth
Unterrichtsmaterial Kreislaufwirtschaft - Den Kreislauf in Schwung bringen: Arbeitsblatt: 2.4 Carbon Capture and Stoage und Experiment: 2.5 Modellversuch zur Speicherung von Kohlenstoffdioxid in Kohleflözen
In Dr. Karl Hübner, Prof. Dr. Bernd Ralle, Editor
Herausgeber: Fonds der Chemischen Industrie im Verband der Chemischen Industrie e. V. (FCI)
April 2025

5399.

[german] Kiesling, Elisabeth; Bohrmann-Linde, Claudia
Von der Leitlinie BNE zum bilingual-englischen Schülerlabor- Konzeption, Erprobung und Evaluation einer bilingualen Experimentierumgebung im Fach Chemie zum Thema Carbon Capture and Storage
In Andreas Keil, Annika Hanau und Julian Dietze (Hg.): BNE in der Lehrkräftebildung. Erkenntnisse aus Forschung und Praxis., Editor, BNE in der Lehrkräftebildung - Erkenntnisse aus Forschung und Praxis
Seite 327-344
Herausgeber: Waxmann
Mai 2025
327-344

ISBN: 978-3-8188-0035-2

5398.

Elghazi, Bouchra; Jacob, Birgit; Zwart, Hans
Well-posedness of a class of infinite-dimensional port-Hamiltonian systems with boundary control and observation
Januar 2025

5397.

Testa, Filippo
Well-Posedness of the Hodge Wave Equation on a Compact Manifold
2025

5396.

Acu, A.M.; Heilmann, Margareta; Raşa, I.
Convergence of linking Durrmeyer type modifications of generalized Baskatov operators
Bulleting of the Malaysian Math. Sciences Society

5395.

Ehrhardt, Matthias
Ein einfaches Kompartment-Modell zur Beschreibung von Revolutionen am Beispiel des Arabischen Frühlings

5394.

Günther, Michael
Einführung in die Finanzmathematik

5393.

Al{\i}, G; Bartel, A
Electrical RLC networks and diodes

5392.

Gjonaj, Erion; Bahls, Christian Rüdiger; Bandlow, Bastian; Bartel, Andreas; Baumanns, Sascha; Belzen, F; Benderskaya, Galina; Benner, Peter; Beurden, MC; Blaszczyk, Andreas; others
Feldmann, Uwe, 143 Feng, Lihong, 515 De Gersem, Herbert, 341 Gim, Sebasti{\'a}n, 45, 333
MATHEMATICS IN INDUSTRY 14 :587

5391.

Ehrhardt, Matthias
für Angewandte Analysis und Stochastik

5390.

Ehrhardt, Matthias; Günther, Michael; Striebel, Michael
Geometric Numerical Integration Structure-Preserving Algorithms for Lattice QCD Simulations

5389.


High order tensor product interpolation in the Combination Technique
preprint, 14 :25

5388.

Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Seite 388

5387.

Ehrhardt, Matthias; Csomós, Petra; Faragó, István; others
Invited Papers

5386.

Günther, Michael
Lab Exercises for Numerical Analysis and Simulation I: ODEs

5385.

Ehrhardt, Matthias; Günther, Michael
Mathematical Modelling of Dengue Fever Epidemics

5384.

Ehrhardt, Matthias
Mathematical Modelling of Monkeypox Epidemics

5383.

Ehrhardt, Matthias; Günther, Michael
Mathematical Study of Grossman's model of investment in health capital

5382.

Bartel, PD Dr A
Mathematische Modellierung in Anwendungen

5381.


Model Order Reduction Techniques for Basket Option Pricing

5380.

Ehrhardt, Matthias; Günther, Michael
Modelling Stochastic Correlations in Finance

5379.

Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems

5378.

Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 377

5377.

Putek, Piotr; PAPLICKI, Piotr; Pulch, Roland; Maten, Jan; Günther, Michael; PA{\L}KA, Ryszard
NONLINEAR MULTIOBJECTIVE TOPOLOGY OPTIMIZATION AND MULTIPHYSICS ANALYSIS OF A PERMANENT-MAGNET EXCITED SYNCHRONOUS MACHINE

5376.

Günther, Michael; Wandelt, Dipl Math Mich{\`e}le
Numerical Analysis and Simulation I: ODEs