Dynamic Iteration Schemes
Dynamic iteration via source coupling
Standard time-integration methods solve transient problems all at once. This may become very inefficient or impossible for large systems of equations. Imaging that such large systems often stem from a coupled problem formulation, where different physical phenomena interact and need to be coupled in order to produce a precise mathematical model.
E.g. highly integrated electric circuits (as in memory chips or CPUs) produce heat, which effects in turn their behavior as electrical system; thus one needs to couple electric and thermal subproblem descriptions. On the one hand, this creates multiple time scales due to different physical phenomena, which demands an efficient treatment, see multirate. On the other hand, in a professional environment one usually has dedicated solvers for the subproblems, which need to be used, and an overall problem formulation is not feasible for any of the involved tools.
For those partitioned problems a dynamic iteration method becomes beneficial or even the sole way-out: it keeps the subproblems separate, solves subproblems sequentially (or in parallel) and iterates until convergence (fixed-point interation). Thus the subproblem's structure can be exploited in the respective integration.
To guarantee or to speed up convergence the time interval of interest is split into a series of windows. Then the time-integration of the windows is applied sequentially and in each window the subproblems are solved iteratively by your favoured method.
Group members working on that field
- Andreas Bartel
- Michael Günther
Former and ongoing Projects
Cooperation
- Herbert De Gersem, Katholieke Universiteit Leuven
Publications
- 2024
5327.
Schaefers, Kevin; Peardon, Michael
A modified Cayley transform for SU(3)
20245326.
Carslaw, Nicola; Bekö, Gabriel; Langer, Sarka; Schoemaecker, Coralie; Mihucz, Victor G.; Dudzinska, Marzenna; Wiesen, Peter; Nehr, Sascha; Huttunen, Kati; Querol, Xavier; Shaw, David
A new framework for indoor air chemistry measurements: Towards a better understanding of indoor air pollution
Indoor Environments, 1 (1) :100001
März 2024
ISSN: 295036205325.
Ehrhardt, Matthias
A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission
Mathematical Biosciences and Engineering, 21 (1) :924–962
2024
Herausgeber: AIMS Press5324.
Ehrhardt, Matthias
A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission
Mathematical Biosciences and Engineering, 21 (1) :924–962
2024
Herausgeber: AIMS Press5323.
5322.
Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A numerical study of the impact of variance boundary conditions for the Heston model
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Springer
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Herausgeber: Bergische Universität Wuppertal
20245321.
Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A numerical study of the impact of variance boundary conditions for the Heston model
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Springer
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Herausgeber: Bergische Universität Wuppertal
20245320.
Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type
Preprint
20245319.
Clemens, Markus; Henkel, Marvin-Lucas; Kasolis, Fotios; Günther, Michael
A Port-Hamiltonian System Perspective on Electromagneto-Quasistatic Field Formulations of Darwin-Type
Preprint
20245318.
Hoang, Manh Tuan; Ehrhardt, Matthias
A second-order nonstandard finite difference method for a general Rosenzweig-MacArthur predator--prey model
Journal of Computational and Applied Mathematics :115752
2024
Herausgeber: Elsevier5317.
Dächert, Kerstin; Fleuren, Tino; Klamroth, Kathrin
A simple, efficient and versatile objective space algorithm for multiobjective integer programming
Mathematical Methods of Operations Research, 100 :351—384
20245316.
Vinod, Vivin; Zaspel, Peter
Assessing Non-Nested Configurations of Multifidelity Machine Learning for Quantum-Chemical Properties
Machine Learning: Science and Technology, 5 (4) :045005
20245315.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Asymptotic expansions for variants of the gamma and Post–Widder operators preserving 1 and x^j
Mathematical Methods in the Applied Sciences, 47 (18) :13718-13733
20245314.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Asymptotic properties for a general class of Szász-Mirakjan-Durrmeyer operators
20245313.
Bauß, Julius; Stiglmayr, Michael
Augmenting Biobjective Branch & Bound with Scalarization-Based Information
Mathematical Methods of Operations Research
20245312.
Vinod, Vivin; Zaspel, Peter
Benchmarking Data Efficiency in Δ-ML and Multifidelity Models for Quantum Chemistry.
20245311.
Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE-Fortbildungsreihe für Lehrkräfte und Studierende in der Didaktik der Chemie
Herausgeber: Gemeinsamer Studienausschuss (GSA) in der School of Education an der Bergischen Universität Wuppertal
Newsletter Lehrer*innenbildung an der Bergischen Universität Wuppertal
Juli 20245310.
Klass, Friedemann; Bartel, Andreas; Gabbana, PD Alessandro
Boundary conditions for multi-speed lattice Boltzmann methods
20245309.
Bailo, Rafael; Barbaro, Alethea; Gomes, Susana N.; Riedl, Konstantin; Roith, Tim; Totzeck, Claudia; Vaes, Urbain
CBX: Python and Julia Packages for Consensus-Based Interacting Particle Methods
Journal of Open Source Software, 9 (98) :6611
2024
Herausgeber: The Open Journal5308.
Fasi, Massimiliano; Gaudreault, Stéphane; Lund, Kathryn; Schweitzer, Marcel
Challenges in computing matrix functions
20245307.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195–208
2024
Herausgeber: Pergamon5306.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195-208
Juli 2024
ISSN: 0898-12215305.
Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems
Jpn. J. Ind. Appl. Math.
20245304.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Commutativity and spectral properties for a general class of Szász-Mirakjan-Durrmeyer operators
Advances in Operator Theory, 10 (1) :14
20245303.
Vorberg, Lukas; Jacob, Birgit; Wyss, Christian
Computing the Quadratic Numerical Range
Journal of Computational and Applied Mathematics :116049
2024