Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2024
5200.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluids, 36 (3)
2024
Herausgeber: AIP Publishing5199.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness WENO method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluid, 36 (3) :036603
2024
Herausgeber: AIP Publishing5198.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness WENO method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluid, 36 (3) :036603
2024
Herausgeber: AIP Publishing5197.
Stiglmayr, Michael; Uhlemeyer, Svenja; Uhlemeyer, Björn; Zdrallek, Markus
Determining Cost-Efficient Controls of Electrical Energy Storages Using Dynamic Programming
Journal of Mathematics in Industry
20245196.
Ehrhardt, M.; Kruse, T.; Tordeux, A.
Dynamics of a Stochastic port-{H}amiltonian Self-Driven Agent Model in One Dimension
ESAIM: Math. Model. Numer. Anal.
20245195.
Efficient and Simple Extraction Protocol for Triterpenic Acids from Apples
Journal of Chemical Education, 101 :2087-2093
April 2024
Herausgeber: ACS5194.
Ehrhardt, Matthias; Kozitskiy, Sergey B
A generalization of the split-step Padé method to the case of coupled acoustic modes equation in a 3D waveguide
Journal of Sound and Vibration :118304
2024
Herausgeber: Elsevier5193.
Holzenkamp, Matthias; Lyu, Dongyu; Kleinekathöfer, Ulrich; Zaspel, Peter
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials.
20245192.
Gaul, Daniela
Exact and Heuristic Methods for Dial-a-Ride Problems
Dissertation
Dissertation
Bergische Universität Wuppertal
20245191.
Lyu, Dongyu; Holzenkamp, Matthias; Vinod, Vivin; Holtkamp, Yannick M.; Maity, Sayan; Salazar, Carlos R.; Kleinekathöfer, Ulrich; Zaspel, Peter
Excitation Energy Transfer between Porphyrin Dyes on a Clay Surface: A study employing Multifidelity Machine Learning.
20245190.
Kienitz, Jörg
Exciting times are ahead - Gaussian views and yield curve extrapolation
Wilmott, 2024 (134) :46–50
2024
Herausgeber: Wilmott Magazine5189.
[german] Zeller, Diana; Bohrmann-Linde, Claudia
Falschinformationen in Videos? Mit dem Konzept KriViNat die Kompetenz der Informationsbewertung stärken
In Bohrmann-Linde, C.; Gökkus, Y.; Meuter, N.; Zeller, D., Editor, Band Netzwerk Digitalisierter Chemieunterricht. Sammelband NeDiChe-Treff 2022
Seite 9-15
Herausgeber: Chemiedidaktik. Bergische Universität Wuppertal
2024
9-155188.
Bartel, Andreas; Schaller, Manuel
Goal-oriented time adaptivity for port-{H}amiltonian systems
2024- 2023
5187.
Haussmann, N.; Stroka, S.; Mazaheri, S.; Clemens, M.
Using Point Clouds for Material Properties Smoothing in Low-Frequency Numerical Dosimetry Simulations
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, South Korea
Dezember 20235186.
Kähne, B.; Clemens, M.
A GPU Accelerated Semi-Implicit Method for Large-Scale Nonlinear Eddy-Current Problems Using Adaptive Time Step Control
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, South Korea
Dezember 20235185.
Gernandt, Hannes; Hinsen, Dorothea; Cherifi, Karim
The difference between port-Hamiltonian, passive and positive real descriptor systems
Mathematics of Control, Signals, and Systems
Dezember 20235184.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Voronovskaja formula for Aldaz–Kounchev–Render operators: uniform convergence
Analysis and Mathematical Physics, 14 (1)
Dezember 2023
ISSN: 1664-235X5183.
Stroka, S.; Kasolis, F.; Haussmann, N.; Clemens, M.
Efficient Low-Frequency Human Exposure Assessment with the Maximum Entropy Snapshot Sampling
21st Biennial IEEE Conference on Electromagnetic Field Computation (CEFC 2024)
Jeju, Korea
November 20235182.
Xuan, Mingjun; Fan, Jilin; Khiêm, Vu Ngoc; Zou, Miancheng; Brenske, Kai-Oliver; Mourran, Ahmed; Vinokur, Rostislav; Zheng, Lifei; Itskov, Mikhail; Göstl, Robert; Herrmann, Andreas
Polymer Mechanochemistry in Microbubbles
Advanced Materials, 35 (47) :2305130
November 2023
ISSN: 1521-40955181.
Stroka, S.; Haussmann, N.; Clemens, M.
Efficient Assessment of High-Resolution Low-Frequency Magnetic Field Exposure Scenarios Using Reduced Order Models
15th Scientific Computing in Electrical Engineering (SCEE 2024)
Darmstadt, Germany
November 20235180.
[german] Kiesling, Elisabeth; Kremer, Richard; Pereira Vaz, Nuno; Venzlaff, Julian; Bohrmann-Linde, Claudia
Wege aus der Klimakrise – ein BNE-Schülerlaborangebot mit mehrdimensionalem Zugang
MNU Journal, 76 (06/2023) :464 - 471
November 2023
ISSN: 0025-58665179.
Alameddine, Jean-Marco; Albrecht, Johannes; Dembinski, Hans; Gutjahr, Pascal; Kampert, Karl-Heinz; Rhode, Wolfgang; Sackel, Maximilian; Sandrock, Alexander; Soedingrekso, Jan
Improvements in charged lepton and photon propagation for the software PROPOSAL
November 20235178.
[german] Grandrath, Rebecca
Videoschnitt für Einsteiger:innen
Unterricht Biologie - Das Schülerarbeitsheft, 51 :32-36
November 20235177.
He, Siyang; Schog, Simon; Chen, Ying; Ji, Yuxin; Panitz, Sinan; Richtering, Walter; Göstl, Robert
Photoinduced Mechanical Cloaking of Diarylethene-Crosslinked Microgels
Advanced Materials, 35 (41) :2305845
Oktober 2023
ISSN: 1521-40955176.
Phenanthro[9,10‑d]imidazoles: An Unexpected Synthetic Route
Synthesis, 55 (24) :4224-4230
Oktober 2023
Herausgeber: Thieme
ISSN: 0039-7881