Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2023
5150.
Dehne, Tobias
Assessment of horizontal flame spread with solid pyrolysis modelling in the Fire Dynamics Simulator
Bergische Universität Wuppertal
20235149.
Schäfers, Torben; Teng, Long
Asymmetry in stochastic volatility models with threshold and time-dependent correlation
Studies in Nonlinear Dynamics & Econometrics, 27 (2) :131–146
2023
Herausgeber: De Gruyter5148.
Hastir, Anthony; Hosfeld, René; Schwenninger, Felix L.; Wierzba, Alexander A.
BIBO stability for funnel control: semilinear internal dynamics with unbounded input and output operators
20235147.
Gorski, Jochen; Klamroth, Kathrin; Sudhoff, Julia
Biobjective optimization problems on matroids with binary costs
Optimization, 72 (7) :1931-1960
2023
Herausgeber: Taylor & Francis5146.
[german] Grandrath, Rebecca
CapCut – intuitive und vollständige Videobearbeitung
:1-2
2023
Herausgeber: Friedrich-Schiller-Universität Jena, Institut für Anorganische und Analytische Chemie5145.
Hosfeld, René; Jacob, Birgit; Schwenninger, Felix L.
Characterization of Orlicz admissibility
Semigroup Forum, 106 :633–661
20235144.
Bohrmann-Linde, Claudia; Siehr, Ilona
Chemie Qualifikationsphase Nordrhein-Westfalen
Herausgeber: C.C.Buchner Verlag, Bamberg
2023ISBN: 978-3-661-06002-6
5143.
Albrecht, Johannes; others
Comparison and efficiency of GPU accelerated optical light propagation in CORSIKA\textasciitilde{}8
PoS, ICRC2023 :417
20235142.
Carrillo, Jose Antonio; Totzeck, Claudia; Vaes, Urbain
Consensus-based Optimization and Ensemble Kalman Inversion for Global Optimization Problems with Constraints
, Modeling and Simulation for Collective Dynamics,Lecture Notes Series, Institute for Mathematical Sciences, NUS Band 40
20235141.
Halim, A. Abdul; others
Constraining the sources of ultra-high-energy cosmic rays across and above the ankle with the spectrum and composition data measured at the Pierre Auger Observatory
JCAP, 05 :024
20235140.
Yue, Baobiao; others
Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger Observatory
PoS, ICRC2023 :1095
20235139.
Abdul Halim, Adila; others
Constraints on UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger Observatory
PoS, ICRC2023 :1520
20235138.
Abdul Halim, Adila; others
Constraints on upward-going air showers using the Pierre Auger Observatory data
PoS, ICRC2023 :1099
20235137.
Acu, Ana-Maria; Heilmann, Margareta; Raşa, Ioan; Seserman, Andra
Convergence of linking Durrmeyer type modifications of generalized Baskakov operators
Bulletin of the Malaysian Math. Sciences Society, 46 (3)
20235136.
Jacob, Birgit; Mironchenko, Andrii; Partington, Jonathan R.; Wirth, Fabian
Corrigendum: Noncoercive Lyapunov functions for input-to-state stability of infinite-dimensional systems
SIAM J. Control Optim., 61 (2) :723-724
20235135.
Aerdker, S.; others
CRPropa 3.2: a public framework for high-energy astroparticle simulations
PoS, ICRC2023 :1471
20235134.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
arXiv preprint arXiv:2301.03924
20235133.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier5132.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier5131.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep FDM: Enhanced finite difference methods by deep learning
Franklin Open, 4 :100039
2023
Herausgeber: Elsevier5130.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep finite difference method for solving Asian option pricing problems
Preprint IMACM
2023
Herausgeber: Bergische Universität Wuppertal5129.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep finite difference method for solving Asian option pricing problems
Preprint IMACM
2023
Herausgeber: Bergische Universität Wuppertal5128.
Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear Backward Stochastic Differential Equations
Discrete Contin. Dyn. Syst. - B
2023
ISSN: 1531-34925127.
Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete Contin. Dyn. Syst. - B
20235126.
Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the $L^p$-sense
2023