Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2023
4655.
Kossaczká, Tatiana; Ehrhardt, Matthias; Günther, Michael
Deep finite difference method for solving Asian option pricing problems
Preprint IMACM
20234654.
Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear Backward Stochastic Differential Equations
Discrete Contin. Dyn. Syst. - B
2023
ISSN: 1531-34924653.
Kapllani, Lorenc; Teng, Long
Deep Learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete Contin. Dyn. Syst. - B
20234652.
Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the $L^p$-sense
20234651.
Ackermann, Julia; Jentzen, Arnulf; Kruse, Thomas; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for Kolmogorov partial differential equations with Lipschitz nonlinearities in the Lp-sense
Preprint
20234650.
Abdul Halim, Adila; others
Deep-Learning-Based Cosmic-Ray Mass Reconstruction Using the Water-Cherenkov and Scintillation Detectors of AugerPrime
PoS, ICRC2023 :371
20234649.
Kowol, Philipp; Bargmann, Swantje; Görrn, Patrick; Wilmers, Jana
Delamination Behavior of Highly Stretchable Soft Islands Multi-Layer Materials
Applied Mechanics, 4 (2) :514--527
2023
ISSN: 2673-31614648.
Klamroth, Kathrin; Lang, Bruno; Stiglmayr, Michael
Efficient Dominance Filtering for Unions and Minkowski Sums of Non-Dominated Sets
Computers and Operations Research
2023
Herausgeber: Elsevier {BV}4647.
Abdul Halim, Adila; others
Constraints on UHECR characteristics from cosmogenic neutrino limits with the measurements of the Pierre Auger Observatory
PoS, ICRC2023 :1520
20234646.
Poggi, Aurora; Di Persio, Luca; Ehrhardt, Matthias
Electricity Price Forecasting via Statistical and Deep Learning Approaches: The German Case
AppliedMath, 3 (2) :316--342
2023
Herausgeber: Multidisciplinary Digital Publishing Institute4645.
Poggi, Aurora; Di Persio, Luca; Ehrhardt, Matthias
Electricity Price Forecasting via Statistical and Deep Learning Approaches: The German Case
AppliedMath, 3 (2) :316--342
2023
Herausgeber: Multidisciplinary Digital Publishing Institute4644.
Glück, Jochen; Hölz, Julian
Eventual cone invariance revisited
Linear Algebra and its Applications, 675 :274 - 293
20234643.
Janssen, Nils; Fetzer, Jana R; Grewing, Jannis; Burgmann, Sebastian; Janoske, Uwe
Experimental investigation of particle--droplet--substrate interaction
Experiments in Fluids, 64 (3) :44
2023
Herausgeber: Springer Berlin Heidelberg Berlin/Heidelberg4642.
Ehrhardt, Matthias; Pereselkov, Sergey; Kuz’kin, Venedikt; Kaznacheev, Ilya; Rybyanets, Pavel
Experimental observation and theoretical analysis of the low-frequency source interferogram and hologram in shallow water
Journal of Sound and Vibration, 544 :117388
März 2023
Herausgeber: Academic Press4641.
Ehrhardt, Matthias; Pereselkov, Sergey; Kuz’kin, Venedikt; Kaznacheev, Ilya; Rybyanets, Pavel
Experimental observation and theoretical analysis of the low-frequency source interferogram and hologram in shallow water
Journal of Sound and Vibration, 544 :117388
2023
Herausgeber: Academic Press4640.
Ehrhardt, Matthias; Pereselkov, Sergey; Kuz’kin, Venedikt; Kaznacheev, Ilya; Rybyanets, Pavel
Experimental observation and theoretical analysis of the low-frequency source interferogram and hologram in shallow water
Journal of Sound and Vibration, 544 :117388
2023
Herausgeber: Academic Press4639.
Kääpä, Alex; Kampert, Karl-Heinz; Becker Tjus, Julia
Flux predictions in the transition region incorporating the effects from propagation of cosmic rays in the Galactic magnetic field
EPJ Web Conf., 283 :03006
20234638.
Petrov, Pavel; Matskovskiy, Andrey; Zakharenko, Alena; Zavorokhin, German; Dosso, Stan
Generalized Pekeris-Buldyrev waveguide and its properties
submitted to J. Acoust. Soc. Am.
Juni 20234637.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Genuine Bernstein–Durrmeyer type operators preserving 1 and $x^j$
Annals of Functional Analysis, 15 (1)
Oktober 2023
Herausgeber: Springer Science and Business Media LLC
ISSN: 2008-87524636.
Haussmann, Norman; Stroka, Steven; Schmuelling, Benedikt; Clemens, Markus
GPU-accelerated body-internal electric field exposure simulation using low-frequency magnetic field sampling points
COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 42 (5) :982-992
01 2023
Herausgeber: Emerald Publishing Limited
ISSN: 0332-16494635.
Stroka, S.; Haussmann, N.; Zang, M.; Schmuelling, B.; Clemens, M.
GPU-Based Near Real-Time Estimation of the Human Body Penetrating Low-Frequency Magnetic Fields Using Free-Space Field Measurements
IEEE Transactions on Magnetics, 59 (5) :1-4
20234634.
[german] Gökkus, Yasemin; Kremer, Richard; Zeller, Diana; Bohrmann-Linde, Claudia
H5P angereicherte Videos für den Chemieunterricht und die Lehrkräfteausbildung
In Bohrmann-Linde, C.; Gökkuş, Y.; Kremer, R.; Zeller, D., Editor, Band Netzwerk Digitalisierter Chemieunterricht. Sammelband NeDiChe-Treff 2021
Seite 9-18
Herausgeber: Chemiedidaktik. Bergische Universität Wuppertal
2023
9-184633.
Abdul Halim, Adila; others
Constraints on upward-going air showers using the Pierre Auger Observatory data
PoS, ICRC2023 :1099
20234632.
Yue, Baobiao; others
Constraints on BSM particles from the absence of upward-going air showers in the Pierre Auger Observatory
PoS, ICRC2023 :1095
20234631.