Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



6780.

Ehrhardt, Matthias; Günther, Michael
Modelling Stochastic Correlations in Finance

6779.

Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems

6778.

Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 377

6777.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

6776.

Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 377

6775.

Putek, Piotr; PAPLICKI, Piotr; Pulch, Roland; Maten, Jan; Günther, Michael; PA{\L}KA, Ryszard
NONLINEAR MULTIOBJECTIVE TOPOLOGY OPTIMIZATION AND MULTIPHYSICS ANALYSIS OF A PERMANENT-MAGNET EXCITED SYNCHRONOUS MACHINE

6774.

Günther, Michael; Wandelt, Dipl Math Mich{\`e}le
Numerical Analysis and Simulation I: ODEs

6773.

Ehrhardt, Matthias; Günther, Michael
Numerical Evaluation of Complex Logarithms in the Cox-Ingersoll-Ross Model

6772.

Ehrhardt, Matthias; Günther, Michael
Numerical Pricing of Game (Israeli) Options

6771.

Ehrhardt, Matthias; Günther, Michael
Numerical Pricing of Game (Israeli) Options

6770.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

6769.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer
2023

6768.

Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
The Collective Dynamics of a Stochastic Port-Hamiltonian Self-Driven Agent Model in One Dimension
arXiv preprint arXiv:2303.14735
2023

6767.

Al{\i}, G; Bartel, A; Günther, M
Electrical RLC networks and diodes

6766.

Bolten, Matthias; Friedhoff, S.; Hahne, J.
Task graph-based performance analysis of parallel-in-time methods
Parallel Comput., 118 :103050
2023

6765.

[german] Cornelius, Soraya; Bohrmann-Linde, Claudia
Kompetenzförderung durch Erklärvideos in einem Selbstlernbuch zum Einstieg in die Organische Chemie
MNU-Journal, 01.2023 :48-54
2023
ISSN: 0025-5866

6764.

Ehrhardt, Matthias; Pereselkov, Sergey; Kuz’kin, Venedikt; Kaznacheev, Ilya; Rybyanets, Pavel
Experimental observation and theoretical analysis of the low-frequency source interferogram and hologram in shallow water
Journal of Sound and Vibration, 544 :117388
2023
Herausgeber: Academic Press

6763.

Ehrhardt, Matthias; Pereselkov, Sergey; Kuz’kin, Venedikt; Kaznacheev, Ilya; Rybyanets, Pavel
Experimental observation and theoretical analysis of the low-frequency source interferogram and hologram in shallow water
Journal of Sound and Vibration, 544 :117388
2023
Herausgeber: Academic Press

6762.

Petrov, Pavel; Matskovskiy, Andrey; Zakharenko, Alena; Zavorokhin, German; Dosso, Stan
Generalized Pekeris-Buldyrev waveguide and its properties
submitted to J. Acoust. Soc. Am.
2023

6761.

Hosfeld, René; Jacob, Birgit; Schwenninger, Felix; Tucsnak, Marius
Input-to-state stability for bilinear feedback systems
2023

6760.

Schweitzer, Marcel
Integral representations for higher-order Frechet derivatives of matrix functions: Quadrature algorithms and new results on the level-2 condition number
Linear Algebra Appl., 656 :247-276
2023

6759.

Schweitzer, Marcel
Integral representations for higher-order Frechet derivatives of matrix functions: Quadrature algorithms and new results on the level-2 condition number
Linear Algebra Appl., 656 :247-276
2023
Herausgeber: Elsevier

6758.

Albi, Giacomo; Ferrarese, Federica; Totzeck, Claudia
Kinetic based optimization enhanced by genetic dynamics
2023

6757.

Botchev, M. A.; Knizhnerman, L. A.; Schweitzer, M.
Krylov subspace residual and restarting for certain second order differential equations
SIAM J. Sci. Comput. :S223-S253
2023

6756.

Poggi, Aurora; Di Persio, Luca; Ehrhardt, Matthias
Electricity Price Forecasting via Statistical and Deep Learning Approaches: The German Case
AppliedMath, 3 (2) :316--342
2023
Herausgeber: Multidisciplinary Digital Publishing Institute

Weitere Infos über #UniWuppertal: