Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



6793.

Teng, L.; Ehrhardt, M.; Günther, M.
Stochastic Correlation: Modelling, Analysis and Numerical Simulation with Applications in Finance
Herausgeber: World Scientific

6792.

Calvo-Garrido, MC; Ehrhardt, M; V{\'a}zquez, C
PDE modeling and numerical methods for swing option pricing in electricity markets
19th European Conference on Mathematics for Industry, Seite 390

6791.

Teng, L.; Ehrhardt, M.; Günther, M.
Stochastic Correlation: Modelling, Analysis and Numerical Simulation with Applications in Finance
Herausgeber: World Scientific

6790.

Teng, L.; Ehrhardt, M.; Günther, M.
Stochastic Correlation: Modelling, Analysis and Numerical Simulation with Applications in Finance
Herausgeber: World Scientific

6789.

Günther, M; Ehrhardt, M; Knechtli, F; Shcherbakov, D; Striebel, M; Wandelt, M
Symmetric \& Volume Preserving Projection Schemes

6788.

Putek, Piotr; Günther, Michael
Topology Optimization and Analysis of a PM synchronous Machine for Electrical Automobiles

6787.

Ehrhardt, Matthias; Günther, Michael; Brunner, H; Dalhoff, A
Vorhersage-Modelle am Beispiel des Corona-Virus COVID-19

6786.

Ehrhardt, Matthias; Günther, Michael; Brunner, H; Dalhoff, A
Vorhersage-Modelle am Beispiel des Corona-Virus COVID-19

6785.

Calvo-Garrido, MC; Ehrhardt, M; Vázquez, C
PDE modeling and numerical methods for swing option pricing in electricity markets
19th European Conference on Mathematics for Industry, Seite 390

6784.

Ehrhardt, Matthias; Farkas, B{\'a}lint; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas
Operator Splitting and Multirate Schemes

6783.

Silva, JP; Maten, J; Günther, M; Ehrhardt, M
Model Order Reduction Techniques for Basket Option Pricing

6782.

Günther, Michael; Wandelt, Dipl Math Mich{\`e}le
Numerical Analysis and Simulation I: ODEs

6781.

Ehrhardt, Matthias; Günther, Michael
Modelling Stochastic Correlations in Finance

6780.

Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems

6779.

Ehrhardt, Matthias; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas; Maten, Jan
Modelling, Analysis and Simulation with Port-Hamiltonian Systems

6778.

Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 377

6777.

Maten, E Jan W; Ehrhardt, Matthias
MS40: Computational methods for finance and energy markets
19th European Conference on Mathematics for Industry, Seite 377

6776.

Putek, Piotr; PAPLICKI, Piotr; Pulch, Roland; Maten, Jan; Günther, Michael; PA{\L}KA, Ryszard
NONLINEAR MULTIOBJECTIVE TOPOLOGY OPTIMIZATION AND MULTIPHYSICS ANALYSIS OF A PERMANENT-MAGNET EXCITED SYNCHRONOUS MACHINE

6775.

Ehrhardt, Matthias; Günther, Michael
Numerical Evaluation of Complex Logarithms in the Cox-Ingersoll-Ross Model

6774.

Ehrhardt, Matthias; Farkas, Bálint; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas
Operator Splitting and Multirate Schemes

6773.

Ehrhardt, Matthias; Günther, Michael
Numerical Pricing of Game (Israeli) Options

6772.

Ehrhardt, Matthias; Günther, Michael
Numerical Pricing of Game (Israeli) Options

6771.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

6770.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

6769.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

Weitere Infos über #UniWuppertal: