Applied and Computational Mathematics (ACM)

## Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (call option') or to sell (put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.

## Special Interests

### 6945.

Hendricks, C; Ehrhardt, M; Günther, M
High order tensor product interpolation in the Combination Technique
preprint, 14 :25

### 6944.

Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Seite 388

### 6943.

Hendricks, Christian; Ehrhardt, Matthias; Günther, Michael
Hybrid finite difference/pseudospectral methods for stochastic volatility models
19th European Conference on Mathematics for Industry, Seite 388

### 6942.

Ambartsumyan, I; Khattatov, E; Yotov, I; Zunino, P; Arnold, Anton; Ehrhardt, Matthias; Ashyralyev, Allaberen; Csom{\'o}s, Petra; Farag{\'o}, Istv{\'a}n; Fekete, Imre; others
Invited Papers

### 6941.

Ehrhardt, Matthias; Farkas, Bálint; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas
Operator Splitting and Multirate Schemes

### 6940.

Ehrhardt, M.; Günther, M.
Numerik gewöhnlicher Differentialgleichungen : Anwendungen in Technik, Wirtschaft, Biologie und Gesellschaft
Herausgeber: Springer

### 6939.

Ehrhardt, Matthias; Günther, Michael; Brunner, H
Mathematical Study of Grossman's model of investment in health capital

### 6938.

Ehrhardt, Matthias; Farkas, B{\'a}lint; Günther, Michael; Jacob, Birgit; Bartel, PD Dr Andreas
Operator Splitting and Multirate Schemes
2024

### 6937.

[german] Zeller, Diana; Bohrmann-Linde, Claudia
Falschinformationen in Videos? Mit dem Konzept KriViNat die Kompetenz der Informationsbewertung stärken
In Bohrmann-Linde, C.; Gökkus, Y.; Meuter, N.; Zeller, D., Editor, Band Netzwerk Digitalisierter Chemieunterricht. Sammelband NeDiChe-Treff 2022
Seite 9-15
Herausgeber: Chemiedidaktik. Bergische Universität Wuppertal
2024
9-15

### 6936.

Arslan, Bahar; Relton, Samuel D.; Schweitzer, Marcel
Structured level-2 condition numbers of matrix functions
Electron. J. Linear Algebra, 40 :28-47
2024

### 6935.

Ackermann, Julia; Ehrhardt, Matthias; Kruse, Thomas; Tordeux, Antoine
Stabilisation of stochastic single-file dynamics using port-Hamiltonian systems
arXiv preprint arXiv:2401.17954
2024

### 6934.

Santos, Daniela Scherer; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Solving the multiobejctive quasi-clique problem
2024

### 6933.

[english] Grandrath, Rebecca; Bohrmann-Linde, Claudia
Simple biofuel cells: the superpower of baker’s yeast
Science in School - The European journal for science teachers, 66
2024

### 6932.

Frommer, Andreas; Ramirez-Hidalgo, Gustavo; Schweitzer, Marcel; Tsolakis, Manuel
Polynomial preconditioning for the action of the matrix square root and inverse square root
2024

### 6931.

Erbay, Mehmet; Jacob, Birgit; Morris, Kirsten
On the Weierstraß form of infinite dimensional differential algebraic equations
2024

### 6930.

Bolten, Matthias; Doganay, Onur Tanil; Gottschalk, Hanno; Klamroth, Kathrin
Non-convex shape optimization by dissipative {H}amiltonian flows
Engineering Optimization
2024

### 6929.

Allmendinger, Richard; Fonseca, Carlos M.; Sayin, Serpil; Wiecek, Margaret M.; Stiglmayr, Michael
Multiobjective Optimization on a Budget (Dagstuhl Seminar 23361)
2024
Herausgeber: Schloss Dagstuhl – Leibniz-Zentrum für Informatik

### 6928.

Jamil, Hamza
Intrusive and non-intrusive uncertainty quantification methodologies for pyrolysis modeling
Fire Safety Journal, 143 :104060
2024
ISSN: 0379-7112

### 6927.

Erbay, Mehmet; Jacob, Birgit; Morris, Kirsten; Reis, Timo; Tischendorf, Caren
Index concepts for linear differential-algebraic equations in finite and infinite dimensions
2024

### 6926.

Song, Yongcun; Wang, Ziqi; Zuazua, Enrique
2024

### 6925.

Santos, Daniela Scherer; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Ensuring connectedness for the Maximum Quasi-clique and Densest $k$-subgraph problems
2024

### 6924.

Rohde, Martin; Burgmann, Sebastian; Janoske, Uwe
The impact of a two-dimensional vibration excitation on the critical incident flow velocity of a sessile droplet
International Journal of Multiphase Flow, 171 :104663
2024
Herausgeber: Pergamon

### 6923.

Ehrhardt, M.; Kruse, T.; Tordeux, A.
Dynamics of a Stochastic port-{H}amiltonian Self-Driven Agent Model in One Dimension
ESAIM: Math. Model. Numer. Anal.
2024

### 6922.

Stiglmayr, Michael; Uhlemeyer, Svenja; Uhlemeyer, Björn; Zdrallek, Markus
Determining Cost-Efficient Controls of Electrical Energy Storages Using Dynamic Programming
Journal of Mathematics in Industry
2024

### 6921.

Clément, François; Doerr, Carola; Klamroth, Kathrin; Paquete, Luís
Constructing Optimal ${L}_{\infty}$ Star Discrepancy Sets
2024

Weitere Infos über #UniWuppertal: