Applied and Computational Mathematics (ACM)

Finance

The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.

In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.

An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.

Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.

In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.

Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.



Special Interests

Publications



1988

225.

Jensen, Per
Calculation of rotation-vibration linestrengths for triatomic molecules using a variational approach
Journal of Molecular Spectroscopy, 132 (2) :429-457
1988

224.

Heilmann, Margareta
Commutativity of operators from Baskakov-Durrmeyer type
Constructive Theory of Functions - Proceedings of the International Conference, Varna, Bulgaria, 1987, Seite 197-206
1988

223.

[german] Tausch, Michael W.; Paterkiewicz, D.
Fluoreszenz und Phosphoreszenz
Praxis der Naturwissenschaften (Chemie), 36 :14
1988

222.

Jensen, Per
Hamiltonians for the internal dynamics of triatomic molecules
Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 84 (9) :1315-1339
1988

221.

Jensen, Per
Hamiltonians for the internal dynamics of triatomic molecules
Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 84 (9) :1315-1339
1988

220.

Jensen, Per
Hamiltonians for the internal dynamics of triatomic molecules
Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 84 (9) :1315-1339
1988

219.

Czech, C. M.; Kling, H.-W.; Hartkamp, H.
Kontinuierliche Derivatisierung von schwerflüchtigen Wasserinhaltsstoffen durch Periodat-Oxidation in Verbindung mit dem Contistrip-Verfahren
Fresenius' Journal of Analytical Chemistry, 332 (4) :341--344
1988

218.

Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O\(_{2}\)(b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988

217.

Wildt, J{ü}rgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O\(_{2}\)(b\(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\), v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988

216.

Wildt, Jürgen; Bednarek, G.; Fink, Ewald H.; Wayne, Richard P.
Laser excitation of O2(b1Σg+, v'=0,1,2) - rates and channels of energy transfer and quenching
Chemical Physics, 122 (3) :463-470
1988

215.

Heilmann, Margareta
Lp-saturation of some modified Bernstein operators
Journal of Approximation Theory, 54 (3) :260-273
1988
ISSN: 0021-9045

214.

Weinmüller, E.; Winkler, E.
Path-following Algorithm for Singular Boundary Value Problems
ZAMM, 68 :527--537
1988

213.

Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(\(^{3}\)P) atoms in halogenomethane + H flame systems and measurements of C(\(^{3}\)P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988

212.

Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(\(^{3}\)P) atoms in halogenomethane + H flame systems and measurements of C(\(^{3}\)P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988

211.

Becker, Karl Heinz; Brockmann, Klaus Josef; Wiesen, Peter
Spectroscopic identification of C(3P) atoms in halogenomethane + H flame systems and measurements of C(3P) reaction rate constants by two-photon laser-induced fluorescence
Journal of the Chemical Society, Faraday Transactions 2, 84 (5) :455-461
1988

210.

Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a\(^{1}\)\(\Delta\)(a2)-X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988

209.

Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a\(^{1}\)\(\Delta\)(a2)-X\(^{3}\)\(\Sigma\)\(^{-}\)(X\(_{2}\)1) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988

208.

Fink, Ewald H.; Setzer, Klaus-Dieter; Kottsieper, U.; Ramsay, D. A.; Vervloet, M.
The a1Δ(a2)-X3Σ-(X21) electronic band system of selenium monoxide
Journal of Molecular Spectroscopy, 131 (1) :127-132
1988

207.

Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988

206.

Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X\verb=~=\(^{3}\)B\(_{1}\) methylene (CH\(_{2}\)) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988

205.

Jensen, Per; Bunker, Philip R.
The potential surface and stretching frequencies X~3B1 methylene (CH2) determined from experiment using the Morse oscillator-rigid bender internal dynamics Hamiltonian
The Journal of Chemical Physics, 89 (3) :1327-1332
1988
1987

204.

Spirko, Vladim{í}r; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987

203.

Spirko, Vladim{í}r; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H\(_{3}\)\(^{+}\): Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987

202.

Spirko, Vladimír; Cejchan, A.; Jensen, Per
A new Morse-oscillator based Hamiltonian for H3+: Explicit expressions for some vibrational matrix elements
Journal of Molecular Spectroscopy, 124 (2) :430-436
1987

201.

McLean, A. D.; Bunker, Philip R.; Escribano, R. M.; Jensen, Per
An ab initio calculation of \(\nu\)\(_{1}\) and \(\nu\)\(_{3}\) for triplet methylene (X\verb=~=\(^{3}\)B\(_{1}\) CH\(_{2}\)) and the determination of the vibrationless singlet-triplet splitting Te (a\verb=~=\(^{1}\)A\(_{1}\))
The Journal of Chemical Physics, 87 (4) :2166-2169
1987