Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 1989
280.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.; Xu, G. Z.
Rotational analysis of the 0-0 band of the b0\(^{+}\) → X\(_{1}\)0\(^{+}\) system of \(^{130}\)Te\(^{80}\)Se
Journal of Molecular Spectroscopy, 136 (1) :218-221
1989279.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.; Xu, G. Z.
Rotational analysis of the 0-0 band of the b0\(^{+}\) → X\(_{1}\)0\(^{+}\) system of \(^{130}\)Te\(^{80}\)Se
Journal of Molecular Spectroscopy, 136 (1) :218-221
1989278.
Jensen, Per
The potential energy surface for the C\(_{3}\) molecule determined from experimental data. Evidence for a bent equilibrium structure
Collection of Czechoslovak Chemical Communications, 54 (5) :1209-1218
1989
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.277.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.; Xu, G. Z.
Rotational analysis of the 0-0 band of the b0+ → X10+ system of 130Te80Se
Journal of Molecular Spectroscopy, 136 (1) :218-221
1989276.
Tausch, Michael W.; Wachtendonk, M.
STOFF-FORMEL-UMWELT, BAND 1: CHEMISCHE GLEICHGEWICHTE - ELEKTROCHEMIE, Lehrbuch für die S II (Grund- und Leistungskurse), 172 Seiten
Herausgeber: C. C. Buchner, Bamberg
1989275.
Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.
The collision-induced radiation of O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics, 139 (2-3) :401-407
1989274.
Wildt, J{ü}rgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.
The collision-induced radiation of O\(_{2}\)(a\(^{1}\)\(\Delta\)\(_{g}\))
Chemical Physics, 139 (2-3) :401-407
1989273.
Wildt, Jürgen; Fink, Ewald H.; Biggs, P.; Wayne, Richard P.
The collision-induced radiation of O2(a1Δg)
Chemical Physics, 139 (2-3) :401-407
1989272.
Jensen, Per
The potential energy surface for the C\(_{3}\) molecule determined from experimental data. Evidence for a bent equilibrium structure
Collection of Czechoslovak Chemical Communications, 54 (5) :1209-1218
1989
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.271.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
Near-infrared emission bands of TeH and TeD
Journal of Molecular Spectroscopy, 138 (1) :19-28
1989270.
Jensen, Per
The potential energy surface for the C3 molecule determined from experimental data. Evidence for a bent equilibrium structure
Collection of Czechoslovak Chemical Communications, 54 (5) :1209-1218
1989
Herausgeber: Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.269.
Jensen, Per
The potential energy surface for the electronic ground state of the water molecule determined from experimental data using a variational approach
Journal of Molecular Spectroscopy, 133 (2) :438-460
1989268.
Fink, Ewald H.; Setzer, Klaus-Dieter; Ramsay, D. A.; Vervloet, M.
Near-infrared emission bands of TeH and TeD
Journal of Molecular Spectroscopy, 138 (1) :19-28
1989267.
Bauer, W.; Engelhardt, B.; Wiesen, Peter; Becker, Karl Heinz
Lifetime measurements of GeH and CH in the A\(^{2}\)\(\Delta\), v'=0 state by laser-induced fluorescence
Chemical Physics Letters, 158 (3-4) :321-324
1989266.
Becker, Karl Heinz; Wiesen, Peter
Measurements on the CH*(A2Δ → X2Π) Chemiluminescence in the C2H2 + O Flame and Quenching Rate Constants for Different Reactants at 297 K
Zeitschrift für Physikalische Chemie, 161 (Part_1_2) :131-144
1989265.
Civis, S.; Blom, C. E.; Jensen, Per
Diode laser infrared spectra and potential energy curve for SH+
Journal of Molecular Spectroscopy, 138 (1) :69-78
1989264.
Bunker, Philip R.; Jensen, Per; Karpfen, Alfred; Lischka, Hans
A theoretical calculation of the rotation-vibration energies for lithium hydroxide, LiOH
Journal of Molecular Spectroscopy, 135 (1) :89-104
1989263.
Bunker, Philip R.; Jensen, Per; Karpfen, Alfred; Lischka, Hans
A theoretical calculation of the rotation-vibration energies for lithium hydroxide, LiOH
Journal of Molecular Spectroscopy, 135 (1) :89-104
1989262.
Bunker, Philip R.; Jensen, Per; Karpfen, Alfred; Lischka, Hans
A theoretical calculation of the rotation-vibration energies for lithium hydroxide, LiOH
Journal of Molecular Spectroscopy, 135 (1) :89-104
1989261.
Comeau, Donald C.; Shavitt, Isaiah; Jensen, Per; Bunker, Philip R.
An ab initio determination of the potential-energy surfaces and rotation-vibration energy levels of methylene in the lowest triplet and singlet states and the singlet-triplet splitting
The Journal of Chemical Physics, 90 (11) :6491-6500
1989260.
Comeau, Donald C.; Shavitt, Isaiah; Jensen, Per; Bunker, Philip R.
An ab initio determination of the potential-energy surfaces and rotation-vibration energy levels of methylene in the lowest triplet and singlet states and the singlet-triplet splitting
The Journal of Chemical Physics, 90 (11) :6491-6500
1989259.
Comeau, Donald C.; Shavitt, Isaiah; Jensen, Per; Bunker, Philip R.
An ab initio determination of the potential-energy surfaces and rotation-vibration energy levels of methylene in the lowest triplet and singlet states and the singlet-triplet splitting
The Journal of Chemical Physics, 90 (11) :6491-6500
1989258.
Civis, S.; Blom, C. E.; Jensen, Per
Diode laser infrared spectra and potential energy curve for SH\(^{+}\)
Journal of Molecular Spectroscopy, 138 (1) :69-78
1989257.
Civis, S.; Blom, C. E.; Jensen, Per
Diode laser infrared spectra and potential energy curve for SH\(^{+}\)
Journal of Molecular Spectroscopy, 138 (1) :69-78
1989256.
Heilmann, Margareta
Direct and converse results for operators of Baskakov-Durrmeyer type
Approximation Theory Appl., 5 (1) :105-127
1989