Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 1992
405.
Tausch, Michael W.; Wachtendonk, M.; Deissenberger, H.; Porth, H.-R.; Weißenhorn, R.G.
STOFF-FORMEL-UMWELT, BAND 2: ORGANISCHE CHEMIE - ANGEWANDTE CHEMIE, Lehrbuch für die S II, (Grund- und Leistungskurse), 272 Seiten
Herausgeber: C. C. Buchner, Bamberg
1992404.
Becker, Karl Heinz; Engelhardt, B.; Geiger, Harald; Kurtenbach, Ralf; Schrey, G.; Wiesen, Peter
Temperature dependence of the CH+N\(_{2}\) reaction at low total pressure
Chemical Physics Letters, 195 (4) :322-328
1992403.
Becker, Karl Heinz; Engelhardt, B.; Geiger, Harald; Kurtenbach, Ralf; Schrey, G.; Wiesen, Peter
Temperature dependence of the CH+N\(_{2}\) reaction at low total pressure
Chemical Physics Letters, 195 (4) :322-328
1992402.
Benter, Thorsten; Becker, Eilhard; Wille, Uta; Rahman, M. M.; Schindler, Ralph N.
The Determination of Rate Constants for the Reactions of Some Alkenes with the NO\(_{3}\) Radical
Berichte der Bunsengesellschaft für physikalische Chemie, 96 (6) :769-775
1992401.
Tausch, Michael W.; Wachtendonk, M.; Deissenberger, H.; Porth, H.-R.; Weißenhorn, R.G.
Lehrerband mit didaktischen Hinweisen und Lösungen der Aufgaben zu STOFF-FORMEL-UMWELT, BAND 2: ORGANISCHE CHEMIE - ANGEWANDTE CHEMIE, Lehrbuch für die S II, (Grund- und Leistungskurse)
Herausgeber: C. C. Buchner, Bamberg
1992400.
Benter, Thorsten; Becker, Eilhard; Wille, Uta; Rahman, M. M.; Schindler, Ralph N.
The Determination of Rate Constants for the Reactions of Some Alkenes with the NO\(_{3}\) Radical
Berichte der Bunsengesellschaft für physikalische Chemie, 96 (6) :769-775
1992399.
Benter, Thorsten; Becker, Eilhard; Wille, Uta; Rahman, M. M.; Schindler, Ralph N.
The Determination of Rate Constants for the Reactions of Some Alkenes with the NO3 Radical
Berichte der Bunsengesellschaft für physikalische Chemie, 96 (6) :769-775
1992398.
Ziebarth, K.; Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The X\(_{2}\) \(^{2}\)\(\Pi\)\(_{3/2}\) → X\(_{1}\) \(^{2}\)\(\Pi\)\(_{1/2}\) electronic band systems of lead monohalides in the near infrared
Chemical Physics Letters, 190 (3-4) :271-278
1992397.
Ziebarth, K.; Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The X\(_{2}\) \(^{2}\)\(\Pi\)\(_{3/2}\) → X\(_{1}\) \(^{2}\)\(\Pi\)\(_{1/2}\) electronic band systems of lead monohalides in the near infrared
Chemical Physics Letters, 190 (3-4) :271-278
1992396.
Ziebarth, K.; Breidohr, R.; Shestakov, Oleg; Fink, Ewald H.
The X2 2Π3/2 → X1 2Π1/2 electronic band systems of lead monohalides in the near infrared
Chemical Physics Letters, 190 (3-4) :271-278
1992395.
Barone, Vincenzo; Jensen, Per; Minichino, Camilla
Vibro-rotational analysis of Si\(_{2}\)C from an ab initio potential energy surface. A comparison between perturbative and variational methods
Journal of Molecular Spectroscopy, 154 (2) :252-264
1992394.
Barone, Vincenzo; Jensen, Per; Minichino, Camilla
Vibro-rotational analysis of Si\(_{2}\)C from an ab initio potential energy surface. A comparison between perturbative and variational methods
Journal of Molecular Spectroscopy, 154 (2) :252-264
1992393.
Barone, Vincenzo; Jensen, Per; Minichino, Camilla
Vibro-rotational analysis of Si2C from an ab initio potential energy surface. A comparison between perturbative and variational methods
Journal of Molecular Spectroscopy, 154 (2) :252-264
1992392.
Shestakov, Oleg; Pravilov, A. M.; Demes, H.; Fink, Ewald H.
Radiative lifetime and quenching of the A \(^{2}\)\(\Sigma\)\(^{+}\) and X\(_{2}\) \(^{2}\)\(\Pi\)\(_{3/2}\) states of PbF
Chemical Physics, 165 (2-3) :415-427
1992391.
G\"unther, Michael
Multirate {Rosenbrock}-{Wanner} Verfahren zur Integration von elektrischen Schaltkreisen
Technische Universit\"at at M\"unchen
1992390.
Becker, Karl Heinz; König, R.; Meuser, R.; Wiesen, Peter; Bayes, Kyle D.
Kinetics of C2O radicals formed in the photolysis of carbon suboxide at 308 and 248 nm
Journal of Photochemistry and Photobiology, A: Chemistry, 64 (1) :1-14
1992389.
Jensen, Per; Rohlfing, Celeste Michael; Almlöf, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C3(X~ 1Σg+)
The Journal of Chemical Physics, 97 (5) :3399-3411
1992388.
Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC\(^{+}\) molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992387.
Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC\(^{+}\) molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992386.
Kraemer, Wolfgang P.; Jensen, Per; Roos, B. O.; Bunker, Philip R.
Ab initio rotation-vibration energies and intensities for the HNC+ molecule
Journal of Molecular Spectroscopy, 153 (1-2) :240-254
1992385.
Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992384.
Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992383.
Jensen, Per; Bunker, Philip R.; Epa, V. C.; Karpfen, Alfred
An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer
Journal of Molecular Spectroscopy, 151 (2) :384-395
1992382.
Jensen, Per; Rohlfing, Celeste Michael; Alml{ö}f, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C\(_{3}\)(X\verb=~= \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\))
The Journal of Chemical Physics, 97 (5) :3399-3411
1992381.
Jensen, Per; Rohlfing, Celeste Michael; Alml{ö}f, Jan
Calculation of the complete-active-space self-consistent-field potential-energy surface, the dipole moment surfaces, the rotation-vibration energies, and the vibrational transition moments for C\(_{3}\)(X\verb=~= \(^{1}\)\(\Sigma\)\(_{g}\)\(^{+}\))
The Journal of Chemical Physics, 97 (5) :3399-3411
1992