Finance
The famous Black-Scholes equation is an effective model for option pricing. It was named after the pioneers Black, Scholes and Merton who suggested it 1973.
In this research field our aim is the development of effective numerical schemes for solving linear and nonlinear problems arising in the mathematical theory of derivative pricing models.
An option is the right (not the duty) to buy (`call option') or to sell (`put option') an asset (typically a stock or a parcel of shares of a company) for a price E by the expiry date T. European options can only be exercised at the expiration date T. For American options exercise is permitted at any time until the expiry date. The standard approach for the scalar Black-Scholes equation for European (American) options results after a standard transformation in a diffusion equation posed on an bounded (unbounded) domain.
Another problem arises when considering American options (most of the options on stocks are American style). Then one has to compute numerically the solution on a semi-unbounded domain with a free boundary. Usually finite differences or finite elements are used to discretize the equation and artificial boundary conditions are introduced in order to confine the computational domain.
In this research field we want to design and analyze new efficient and robust numerical methods for the solution of highly nonlinear option pricing problems. Doing so, we have to solve adequately the problem of unbounded spatial domains by introducing artificial boundary conditions and show how to incorporate them in a high-order time splitting method.
Nonlinear Black-Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values than the classical linear model by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor's preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself.
Special Interests
Publications
- 2024
4805.
Petrov, Pavel S; Ehrhardt, Matthias; Kozitskiy, Sergey B
A generalization of the split-step Padé method to the case of coupled acoustic modes equation in a 3D waveguide
Journal of Sound and Vibration :118304
2024
Herausgeber: Elsevier4804.
Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A gradient-based calibration method for the Heston model
International Journal of Computer Mathematics
20244803.
Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A gradient-based calibration method for the Heston model
International Journal of Computer Mathematics, 101 (9-10) :1094–1112
2024
Herausgeber: Taylor & Francis4802.
Schaefers, Kevin; Peardon, Michael; Guenther, Michael
A modified Cayley transform for SU(3)
20244801.
Santos, Daniela Scherer; Klamroth, Kathrin; Martins, Pedro; Paquete, Luís
Solving the multiobejctive quasi-clique problem
20244800.
4799.
Clevenhaus, Anna; Totzeck, Claudia; Ehrhardt, Matthias
A numerical study of the impact of variance boundary conditions for the Heston model
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
Springer
In Burnecki, K. and Szwabiński, J. and Teuerle, M., Editor
20244798.
Dächert, Kerstin; Fleuren, Tino; Klamroth, Kathrin
A simple, efficient and versatile objective space algorithm for multiobjective integer programming
Mathematical Methods of Operations Research
20244797.
Klass, Friedemann; Bartel, Andreas; Gabbana, PD Alessandro
Boundary conditions for multi-speed lattice Boltzmann methods
Universitätsbibliothek
20244796.
Gaul, Daniela; Klamroth, Kathrin; Pfeiffer, Christian; Stiglmayr, Michael; Schulz, Arne
A Tight Formulation for the Dial-a-Ride Problem
European Journal of Operational Research
September 2024
Herausgeber: Elsevier BV
ISSN: 0377-22174795.
Bauß, Julius; Stiglmayr, Michael
Adapting Branching and Queuing for Multi-objective Branch and Bound
Operations Research Proceedings 2023
Herausgeber: Springer
20244794.
Frommer, Andreas; Rinelli, Michele; Schweitzer, Marcel
Analysis of stochastic probing methods for estimating the trace of functions of sparse symmetric matrices
Math. Comp.
20244793.
Vinod, Vivin; Zaspel, Peter
Assessing Non-Nested Configurations of Multifidelity Machine Learning for Quantum-Chemical Properties
Machine Learning: Science and Technology, 5 (4) :045005
20244792.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Asymptotic properties for a general class of Szasz-Mirakjan-Durrmeyer operators
20244791.
Bauß, Julius; Stiglmayr, Michael
Augmenting Biobjective Branch & Bound with Scalarization-Based Information
Mathematical Methods of Operations Research
20244790.
Vinod, Vivin; Zaspel, Peter
Benchmarking Data Efficiency in Δ-ML and Multifidelity Models for Quantum Chemistry.
20244789.
Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE-Fortbildungsreihe für Lehrkräfte und Studierende in der Didaktik der Chemie
Herausgeber: Gemeinsamer Studienausschuss (GSA) in der School of Education an der Bergischen Universität Wuppertal
Newsletter Lehrer*innenbildung an der Bergischen Universität Wuppertal
Juli 20244788.
Holzenkamp, Matthias; Lyu, Dongyu; Kleinekathöfer, Ulrich; Zaspel, Peter
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials.
20244787.
Maamar, Maghnia Hamou; Ehrhardt, Matthias; Tabharit, Louiza
A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission
Mathematical Biosciences and Engineering, 21 (1) :924–962
2024
Herausgeber: AIMS Press4786.
Lyu, Dongyu; Holzenkamp, Matthias; Vinod, Vivin; Holtkamp, Yannick M.; Maity, Sayan; Salazar, Carlos R.; Kleinekathöfer, Ulrich; Zaspel, Peter
Excitation Energy Transfer between Porphyrin Dyes on a Clay Surface: A study employing Multifidelity Machine Learning.
20244785.
Frommer, Andreas; Ramirez-Hidalgo, Gustavo; Schweitzer, Marcel; Tsolakis, Manuel
Polynomial preconditioning for the action of the matrix square root and inverse square root
Electron. Trans. Numer. Anal., 60 :381-404
20244784.
Bolten, M.; Doganay, O. T.; Gottschalk, H.; Klamroth, K.
Non-convex shape optimization by dissipative Hamiltonian flows
Eng. Optim. :1—20
20244783.
Bauß, Julius
On improvements of multi-objective branch and bound
Dissertation
Dissertation
Bergische Universität Wuppertal
20244782.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
On some Cauchy problems and positive linear operators
20244781.
Erbay, Mehmet; Jacob, Birgit; Morris, Kirsten
On the Weierstraß form of infinite dimensional differential algebraic equations
2024