Thermal Coupling
The performance of high-tech circuitry such as processors and power devices also largely depends on the thermal level. Semiconductor devices loss their ability of fast switching if the temperature increases to much. Furthermore after a critical temperature is reached the device will be destroyed. Therefore monitoring temperature and regulating cooling are important issues.
In our research, we set up simulation models for semiconductor equations and integrated circuits, which incorporate transient temperature changes in the device and heat conduction between devices. That is an electric network as well as semiconductor equations have to be equipped with an appropriate model for power transfer and heat conduction.
Since this multiphysical problem of coupled electric networks and heat conduction exhibits widely separated time scales, not only the model but also the numerical algorithms need be design to enable fast simulations. Multirate cosimulation is an good choice if the coupling is appropriately set up. Please see also: (Coupled DAEs).
Publications
- 2024
5364.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Asymptotic properties for a general class of Szász-Mirakjan-Durrmeyer operators
20245363.
Bauß, Julius; Stiglmayr, Michael
Augmenting Biobjective Branch & Bound with Scalarization-Based Information
Mathematical Methods of Operations Research
20245362.
Vinod, Vivin; Zaspel, Peter
Benchmarking Data Efficiency in Δ-ML and Multifidelity Models for Quantum Chemistry.
20245361.
Kiesling, Elisabeth; Venzlaff, Julian; Bohrmann-Linde, Claudia
BNE-Fortbildungsreihe für Lehrkräfte und Studierende in der Didaktik der Chemie
Herausgeber: Gemeinsamer Studienausschuss (GSA) in der School of Education an der Bergischen Universität Wuppertal
Newsletter Lehrer*innenbildung an der Bergischen Universität Wuppertal
Juli 20245360.
Klass, Friedemann; Bartel, Andreas; Gabbana, PD Alessandro
Boundary conditions for multi-speed lattice Boltzmann methods
20245359.
Bailo, Rafael; Barbaro, Alethea; Gomes, Susana N.; Riedl, Konstantin; Roith, Tim; Totzeck, Claudia; Vaes, Urbain
CBX: Python and Julia Packages for Consensus-Based Interacting Particle Methods
Journal of Open Source Software, 9 (98) :6611
2024
Herausgeber: The Open Journal5358.
Fasi, Massimiliano; Gaudreault, Stéphane; Lund, Kathryn; Schweitzer, Marcel
Challenges in computing matrix functions
20245357.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195–208
2024
Herausgeber: Pergamon5356.
Klass, Friedemann; Gabbana, Alessandro; Bartel, Andreas
Characteristic boundary condition for thermal lattice Boltzmann methods
Computers & Mathematics with Applications, 157 :195-208
Juli 2024
ISSN: 0898-12215355.
Finster, Rebecca; Grogorick, Linda; Robra-Bissantz, Susanne
ChatGPT erzähl mir eine Geschichte: Die Verwandlung von Lernwelten durch KI-gestützte Erzählungen
DeLFI Fachtagung Bildungstechnologien
Fulda
2024ISBN: 978-3-88579-255-0
5354.
Yoda, R.; Bolten, M.; Nakajima, K.; Fujii, A.
Coarse-grid operator optimization in multigrid reduction in time for time-dependent Stokes and Oseen problems
Jpn. J. Ind. Appl. Math.
20245353.
Abel, Ulrich; Acu, Ana Maria; Heilmann, Margareta; Raşa, Ioan
Commutativity and spectral properties for a general class of Szász-Mirakjan-Durrmeyer operators
Advances in Operator Theory, 10 (1) :14
20245352.
Vorberg, Lukas; Jacob, Birgit; Wyss, Christian
Computing the Quadratic Numerical Range
Journal of Computational and Applied Mathematics :116049
20245351.
Klamroth, Kathrin; Stiglmayr, Michael; Totzeck, Claudia
Consensus-Based Optimization for Multi-Objective Problems: A Multi-Swarm Approach
Journal of Global Optimization
20245350.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Mathematics of Control, Signals, and Systems, 36 (4) :957–977
2024
Herausgeber: Springer London5349.
Günther, Michael; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Mathematics of Control, Signals, and Systems, 36 (4) :957–977
2024
Herausgeber: Springer London5348.
Günther, M.; Jacob, B.; Totzeck, C.
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Math. Control Signals Syst., 36 :957–977
20245347.
Günther, M.; Jacob, Birgit; Totzeck, Claudia
Data-driven adjoint-based calibration of port-Hamiltonian systems in time domain
Math. Control Signals Syst.
20245346.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes
Preprint
20245345.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes
Preprint
20245344.
Zaspel, Peter; Günther, Michael
Data-driven identification of port-Hamiltonian DAE systems by Gaussian processes.
20245343.
Kapllani, Lorenc; Teng, Long
Deep learning algorithms for solving high-dimensional nonlinear backward stochastic differential equations
Discrete and continuous dynamical systems - B, 29 (4) :1695–1729
2024
Herausgeber: AIMS Press5342.
Ackermann, Julia; Jentzen, Arnulf; Kuckuck, Benno; Padgett, Joshua Lee
Deep neural networks with ReLU, leaky ReLU, and softplus activation provably overcome the curse of dimensionality for space-time solutions of semilinear partial differential equations
arXiv:2406.10876 :64 pages
20245341.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness weighted essentially non-oscillatory method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluids, 36 (3)
2024
Herausgeber: AIP Publishing5340.
Kossaczká, Tatiana; Jagtap, Ameya D; Ehrhardt, Matthias
Deep smoothness WENO method for two-dimensional hyperbolic conservation laws: A deep learning approach for learning smoothness indicators
Physics of Fluid, 36 (3) :036603
2024
Herausgeber: AIP Publishing