Applied and Computational Mathematics (ACM)

Semiconductor

Semiconductor devices are solid state bodies, whose electrical conductivity strongly depends on the temperature and other internal properties like the so-called doping. Depending on the temperature or other internal settigns, they can be regarded as insulator or conductor. (Physically speaken: Semiconductor materials have a band gap between.. and .. electron Volt)
This property makes them extremely useful in electronics, since this property can be easily employed to use them as switches. On nowadays computerchips and prozessors, millions of semiconductor devices (especially transistors) are included in an electronic circuit. In order to use common circuit simulation tools to simualte circuits containing those devices, semiconductor devices are often reflected by compact models - subcircuits of basic elements like resistors, capacitors, inductors and current/voltage sources. Those compact models shoul rebuild the input/output behaviour of the semiconductor device.

Ongoing miniaturization and the step from miro- to nanotechnology, however, leads to more powerful prozessors and chips, since higher packing density can be achieved. On the other hand, this higher packing density and miniaturization of the devices makes parasitic effects like heating predominant. Incorporation of those effects into compact models results in large compact models to describe a single semiconductor device. This makes it desireable to include more exact distributed device models - device models based on partial differential equations - into circuit simulation.

Moreover, smaller devices are driven by smaller signals, what makes them more energy efficient. On the other hand this results in a larger noise/signal ratio, what makes inclusion of non-deterministic effects into device models interesting. All in all, this leads to the following recent question in semiconductor/circuit modelling and simulation:

Open subjects for theses

• Master Thesis: Two-dimensional thermal-electric simulation of semiconductor MOSFET-devices (M.Brunk)

1984

106.

Jensen, Per
C$$_{3}$$O$$_{2}$$ as a semirigid bender: The degenerate $$\nu$$$$_{5}$$ state
Journal of Molecular Spectroscopy, 104 (1) :59-71
1984

105.

Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
b1Σ+ Emissions from group V-VII diatomic molecules. b0+ → X10+, X21 emissions of AsI and SbI
Chemical Physics Letters, 104 (4) :383-388
1984

104.

Kruse, H.; Winter, R.; Fink, Ewald H.; Wildt, Jürgen; Zabel, Friedhelm
b1Σ+ Emissions from group V-VII diatomic molecules. b0+ → X10+, X21 band systems of AsCl and AsBr
Chemical Physics Letters, 111 (1-2) :100-104
1984

103.

Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b$$^{1}$$$$\Sigma$$$$^{+}$$ Emissions from group V-VII diatomic molecules. b0$$^{+}$$ → X$$_{1}$$0$$^{+}$$, X$$_{2}$$1 emissions of AsI and SbI
Chemical Physics Letters, 104 (4) :383-388
1984

102.

Winter, R.; Kruse, H.; Fink, Ewald H.; Wildt, J{ü}rgen; Zabel, Friedhelm
b$$^{1}$$$$\Sigma$$$$^{+}$$ Emissions from group V-VII diatomic molecules. b0$$^{+}$$ → X$$_{1}$$0$$^{+}$$, X$$_{2}$$1 emissions of AsI and SbI
Chemical Physics Letters, 104 (4) :383-388
1984

101.

Jensen, Per
C$$_{3}$$O$$_{2}$$ as a semirigid bender: The degenerate $$\nu$$$$_{5}$$ state
Journal of Molecular Spectroscopy, 104 (1) :59-71
1984
1983

100.

Holstein, K. J.; Fink, Ewald H.; Zabel, Friedhelm
The $$\nu$$$$_{3}$$ vibration of electronically excited HO$$_{2}$$(A$$^{2}$$A')
Journal of Molecular Spectroscopy, 99 (1) :231-234
1983

99.

Wildt, Jürgen; Bielefeld, M.; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative livetimes of the metastable b1Σ states of SO, SeO, PCl and PBr
Bulletin des Sociétés Chimiques Belges, 92 (6-7) :523-524
1983

98.

Jensen, Per; Bunker, Philip R.
The application of the nonrigid bender Hamiltonian to a quasilinear molecule
Journal of Molecular Spectroscopy, 99 (2) :348-356
1983

97.

Wildt, J{ü}rgen; Bielefeld, M.; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative livetimes of the metastable b$$^{1}$$$$\Sigma$$ states of SO, SeO, PCl and PBr
Bulletin des Sociétés Chimiques Belges, 92 (6-7) :523-524
1983

96.

Wildt, J{ü}rgen; Bielefeld, M.; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative livetimes of the metastable b$$^{1}$$$$\Sigma$$ states of SO, SeO, PCl and PBr
Bulletin des Sociétés Chimiques Belges, 92 (6-7) :523-524
1983

95.

[german] Tausch, Michael W.
Strukturaufklärung in der organischen Chemie - Ermittlung der Strukturformeln von Maleinsäure und Fumarsäure
Praxis der Naturwissenschaften (Chemie), 32 :44
1983

94.

Holstein, K. J.; Fink, Ewald H.; Zabel, Friedhelm
The $$\nu$$$$_{3}$$ vibration of electronically excited HO$$_{2}$$(A$$^{2}$$A')
Journal of Molecular Spectroscopy, 99 (1) :231-234
1983

93.

Jensen, Per; Bunker, Philip R.
The application of the nonrigid bender Hamiltonian to a quasilinear molecule
Journal of Molecular Spectroscopy, 99 (2) :348-356
1983

92.

Jensen, Per; Bunker, Philip R.
The application of the nonrigid bender Hamiltonian to a quasilinear molecule
Journal of Molecular Spectroscopy, 99 (2) :348-356
1983

91.

Winnewisser, Brenda P.; Jensen, Per
The infrared spectrum of fulminic acid, HCNO, in the $$\nu$$$$_{4}$$ fundamental region
Journal of Molecular Spectroscopy, 101 (2) :408-421
1983

90.

Wildt, J{ü}rgen; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative lifetime and quenching of SO(b$$^{1}$$$$\Sigma$$$$^{+}$$,$$\nu$$'=0)
Chemical Physics, 80 (1-2) :167-175
1983

89.

Winnewisser, Brenda P.; Jensen, Per
The infrared spectrum of fulminic acid, HCNO, in the $$\nu$$$$_{4}$$ fundamental region
Journal of Molecular Spectroscopy, 101 (2) :408-421
1983

88.

Winnewisser, Brenda P.; Jensen, Per
The infrared spectrum of fulminic acid, HCNO, in the ν4 fundamental region
Journal of Molecular Spectroscopy, 101 (2) :408-421
1983

87.

Jensen, Per
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
Computer Physics Reports, 1 (1) :1-55
1983

86.

Jensen, Per
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
Computer Physics Reports, 1 (1) :1-55
1983

85.

Jensen, Per
The nonrigid bender Hamiltonian for calculating the rotation-vibration energy levels of a triatomic molecule
Computer Physics Reports, 1 (1) :1-55
1983

84.

Holstein, K. J.; Fink, Ewald H.; Zabel, Friedhelm
The ν3 vibration of electronically excited HO2(A2A')
Journal of Molecular Spectroscopy, 99 (1) :231-234
1983

83.

Wildt, Jürgen; Fink, Ewald H.; Winter, R.; Zabel, Friedhelm
Radiative lifetime and quenching of SO(b$$^{1}$$$$\Sigma$$$$^{+}$$,$$\nu$$'=0)