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Introduction

In the simulations of gauge theories, expectation values of certain operators
have to be calculated. This is usually performed using a Hybrid Monte Carlo
method that combines a Metropolis step with a Molecular Dynamics step.
During the Molecular Dynamics step, Hamiltonian equations of motion have
to be solved through an integration scheme. The state-of-the-art integration
methods are the Leapfrog scheme as well as spliting methods.

At the beginning of this thesis, there was the question:

• Are there any higher order numerical integration schemes besides the
Leapfrog or splitting methods for simulations of gauge theories?

For this to be possible, it has to be taken into account that the numerical
integration method has to fulfill some desired properties. First of all, it has to
be symmetric, i. e. time reversible and of a preferably high convergence order.
Due to the fact that the intgration method has to be applied in gauge theories
with elements regarded to be situated in a Lie group, the preservation of the
Lie group structure has to be fulfilled as well.
As mentioned in the title of this thesis, implicit partitioned Runge-Kutta meth-
ods are chosen to be examined in this work.

In chapter 1, a lattice gauge theory is introduced. It is described from a math-
ematical point of view with respect to the simulations.The necessary concepts
as link, plaquette and staple are depicted here. Additionally, the Hamilton
operator and the derivation of its equations of motion are outlined.

Chapter 2 describes the Markov process used in a Metropolis method. More-
over, the Hybrid Monte Carlo algorithm is characterized in detail. The neces-
sity of the properties symmetry and symplecticity (=volume-preservation) of
the numerical intergration scheme are discussed. These features are used in
the detailed balance condition of the Markov process to ensure the reachability
of the equilibrium distribution of the field.

The numerical integration is the main part of this thesis and situated in chapter
3. It starts with an examination of the aforementioned desired properties. The
characteristics symmetry and convergence order are described and connected
to well-known integration schemes including the Leapfrog method. (The men-
tioned splitting methods are not investigated here, they can be found in [1].)
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Furthermore, some facts on differential equations on Lie groups are carried
together.
Considering the aforementioned properties, partitioned Runge-Kutta methods
for Lie groups are developed. During this process, there arise some difficul-
ties: First of all, the solution of the differential equations of course has to be
an element of the Lie group. This is achieved using a Munthe-Kaas method
which replaces the differential equation in the Lie group through a differential
equation in the appropriate Lie algebra and maps the result back in the Lie
group via an exponential function. In this process, the differential equation is
replaced by a truncated series which depends on the desired convergence order.
Moreover, the integration method has to be symmetric. Due to the shape of
the previously described mapping, this is none too easy. There occur problems
concerning the exponential function in the mapping, such that an additional
term is needed. Finally, the convergence order of the partitioned Runge-Kutta
method is derived via Taylor expansions. Since the differential equation is a
suitable truncation of a series, this has to be done for each desired convergence
order separately. At the end of this chapter, there are two symmetric implicit
partitioned Runge-Kutta methods with appropriate conditions for the symme-
try and its convergence orders 2 and 3 derived. For the executed simulations,
there are values for the coefficients needed. The coefficients for convergence
order 2 are taken from [2]. For convergence order 3, they are chosen accord-
ing to calculations performed with the computer algebra system Mathematica.

In chapter 4, the details of the model of an SU(2,C) lattice gauge field are
described. Then, the used fixed point iterations are discussed. In the last
paragraph, the results of the executed simulations are presented which indicate,
that a convergence order 4 can be achieved. These simulations are performed
using the software package Matlab. For the investigation of the derived Runge-
Kutta method, a lattice of size 4 × 4 with gauge coupling β = 2.0 is chosen.
Furthermore, the dependence on the lattice volume and the gauge coupling
are examined.

2



Chapter 1

Gauge Fields on a Lattice

The first chapter serves as a rough introduction to gauge fields on a lattice.
The necessary information for understanding the numerical simulations will
be provided here. Thereby, the sections concerning the gauge field and the
Wilson action are described in [3] and [4]. Parts of section 1.3 can be found in
[5].

Figure 1.1: Lattice sites [x]. The field [ϕ] on a discrete lattice [x] is given. It
can be imagined as a color space at the sites x.

Let a field [ϕ] on a discrete lattice [x] be given.
One of the fundamental objects of quantum field theory is the calculation of
the expectation value ⟨A⟩ of some operator A

(
[ϕ]
)
. This is done via a path

integral of the lattice action S
(
[ϕ]
)

⟨A⟩ = 1
Z

∫
[dϕ] exp

(
−S

(
[ϕ]
))

A
(
[ϕ]
)

(1.1)

with partition function

Z =
∫

[dϕ] exp
(
−S

(
[ϕ]
))
,

integration measure [dϕ], and lattice action S
(
[ϕ]
)
. The lattice action S

(
[ϕ]
)

has to fulfill two conditions. It must reach the correct continuum limit and has
to be gauge invariant. This will be described more detailed in the following
pragraphs.
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Chapter 1. Gauge Fields on a Lattice

1.1 Gauge Field
Let an equidistant lattice with lattice spacing a and periodic boundary condi-
tions be given. We introduce a gauge field [U ] that is a set of matrices being
elements of the special unitary Lie group SU(N,C).

SU(N,C) = {X ∈ Gl(N,C) : X† = X−1 and det(X) = 1}.

The matrices Ux,µ of the set [U ] represent the links between two adjacent lattice
sites from site x in direction µ and are shown as arrows in figure 1.2.

µ = 0

µ = 1 a

Figure 1.2: 2-dimensional field [U ] of lattice links on an equidistant lattice
with lattice spacing a and periodic boundary conditions. The orientation is
given as µ = 0, 1.

Definition 1.1 (Link matrices). A matrix

Ux,µ ∈ SU(N,C)

is called link matrix. It is situated on the link from the lattice site x to its next
neighbour x + aµ̂ in direction µ = 0, 1 and will be shortly referred as link.
µ̂ denotes the unit vector in direction µ, such that 0̂ = (1, 0)T and 1̂ = (0, 1)T
holds. The vector µ̂ is scaled by the lattice constant a.

A link is orientated such that Ux,µ can be seen as a forward connection. Thus
the link Ux+aµ̂,−µ from site x + aµ̂ in the reverse direction −µ is a backward
connection. They are related through Ux+aµ̂,−µ = U †

x,µ since the backward
connection is simply the reversed forward one.

x x + aµ̂

U †
x,µ = Ux+aµ̂,−µ

x x + aµ̂

Ux,µ

Figure 1.3: Left: Link Ux,µ from site x in direction µ. Right: Link U †
x,µ in the

reverse direction (from site x+ aµ in direction −µ).
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1.1. Gauge Field

Definition 1.2 (Plaquette variable). The plaquette variable

U01(x) = Ux,01 := Ux,0Ux+a0̂,1U
†
x+a1̂,0U

†
x,1 (1.2)

related to site x in the (0̂, 1̂)-plane is the smallest closed loop of link matrices
in counterclockwise direction. It is defined as the product over contiguous link
matrices starting and ending at site x and also called plaquette.

Ux,0

Ux+a0̂,1

U†
x+a1̂,0

U†
x,1

x

Figure 1.4: The plaquette is the shortest closed loop on the lattice.

Besides the plaquette, the staple is another important notation in quantum
field theories. For every link Ux,µ from site x to site x+aµ̂ there exist shortest
paths from site x+ aµ̂ to site x not containing the link itself. These paths are
called staples of the link Ux,µ.

Ux,0

Ux−a1̂,1Ux+a0̂,1

Ux,0

U†
x−a1̂,0

U†
x+a1̂,0

U†
x,1 U†

x+a(0̂−1̂),1

Figure 1.5: Staples of the link Ux,µ.

Definition 1.3 (Staples). The sum of all shortest paths is called sum of staples
and will be denoted with Vx,µ := V (Ux,µ). The sum of staples belonging to the
link Ux,0, respective link Ux,1 are

Vx,0 := V (Ux,0) = Ux+a0̂,1U
†
x+a1̂,0U

†
x,1 + U †

x+a(0̂−1̂),1U
†
x−a1̂,0Ux−a1̂,1

resp. Vx,1 := V (Ux,1) = Ux+a1̂,0U
†
x+a0̂,1U

†
x,0 + U †

x+a(1̂−0̂),0U
†
x−a0̂,1Ux−a0̂,0
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Chapter 1. Gauge Fields on a Lattice

1.2 Wilson Action
The lattice action has to be gauge invariant. In this paragraph, we introduce
the Wilson gauge action and show its gauge invariance. For this purpose, the
expression gauge transformation has to be explained.

Definition 1.4 (Gauge transformation). Let [W ] be a set of matrices Wx,

Wx ∈ SU(N,C),

situated on the lattice sites. The gauge transformation

ϕx → ϕ′x = Wxϕx.

rotates the elements of the color space [ϕ]. The link matrices are transformed
as

Ux,µ → U ′
x,µ = WxUx,µW

†
x+aµ̂.

Thus the gauge inner product ϕ†(x)Ux,µϕ(x+ aµ̂) is invariant under the gauge
transformation because ϕ†xUx,µϕx+aµ̂ transforms to

(ϕ′x)†U ′
x,µϕ

′
x+aµ̂ =

(
Wxϕx

)† ·WxUx,µW
†
x+aµ̂ ·Wx+aµ̂ϕx+aµ̂

= ϕ†x ·W †
xWx · Ux,µ ·W †

x+aµ̂Wx+aµ̂ · ϕx+aµ̂

= ϕ†xUx,µϕx+aµ̂.

The Wilson action is the lattice action corresponding to the plaquettes. It will
be denoted as SG

(
[U ]

)
in the following.

Definition 1.5 (Wilson action). The Wilson action

SG
(
[U ]

)
=
∑

x

β

(
1− 1

N
Re
(
tr
(
U01(x)

)))
(1.3)

depends on the sum of the real part of the trace of all plaquettes. Note that
this sum contains every plaquette with just one orientation. The factor β is a
hopping parameter and can be seen as inverse temperature.

Remark 1.6 (Gauge invariance of the Wilson action). The Wilson action is
gauge invariant if SG

(
[U ]

)
= SG

(
[U ′]

)
holds.

Due to the fact that the Wilson action depend on the trace of the plaquette,
the gauge invariance can be easily shown:

U ′
01(x) = Ux,0Ux+a0̂,1U

†
x+a1̂,0U

†
x,1

= WxUx,0W
†
x+a0̂Wx+a0̂Ux+a0̂,1W

†
x+a(0̂+1̂)

(
Wx+a1̂Ux+a1̂,0W

†
x+a(1̂+0̂)

)†(
WxUx,1W

†
x+a1̂

)†

= WxUx,0W
†
x+a0̂Wx+a0̂Ux+a0̂,1W

†
x+a(0̂+1̂)Wx+a(1̂+0̂)U

†
x+a1̂,0W

†
x+a1̂Wx+a1̂U

†
x,1W

†
x

= WxUx,0Ux+a0̂,1U
†
x+a1̂,0U

†
x,1W

†
x

= WxU01(x)W †
x .
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1.3. Hamilton Operator

All except for the first and the last transformation matrices Wx vanish. Be-
cause of the properties of the trace, the trace of a closed path of link variabes
is gauge invariant.

tr
(
U ′

01(x)
)

= tr
(
WxU01(x)W †

x

)

= tr
(
W †

xWxU01(x)
)

= tr
(
U01(x)

)
.

Thus the Wilson action is gauge invariant. It is possible to create other gauge
invariant expressions, for example by another closed path of links. For a small
lattice spacing a→ 0 the continuum limit will be reached.

Remark 1.7 (Expectation value of a gauge field). We can transfer the expec-
tation value ⟨A⟩ of equation (1.1) to the one of a bosonic gauge field [U ] with
Wilson action SG

(
[U ]

)
. It reads

⟨A⟩ = 1
Z

∫
[dU ] exp

(
SG
(
[U ]

))
A
(
[U ]

)
(1.4)

with Haar measure [dU ] (see definition A.1) and partition function

Z =
∫

[dU ] exp
(
−SG

(
[U ]

))
.

The expectation value ⟨A⟩ will be computed numerically. As we shall see later,
we use a Hybrid Monte Carlo method to evaluate the path integral of equation
(1.4). For this purpose, we need the Hamiltonian of the gauge field.

1.3 Hamilton Operator
The Hamiltonian H represents the total energy of the bosonic field. It is a
conserved quantity, such that its time derivative Ḣ vanishes. Furthermore,
the Hamiltonian induces the Hamiltonian equations of motion.

Momenta

We introduce a field [P ] of fictious momenta on the lattice needed for the
definition of the Hamiltonian. The momenta [P ] are associated with the links
[U ]. For every link matrix Ux,µ there exists a fictitious conjugated momentum
Px,µ. These elements Px,µ are traceless, and hermitian (N ×N)-matrices, i. e.

Px,µ = P †
x,µ and tr

(
Px,µ

)
= 0.

The traceless and anti-hermitian matrices iPx,µ are elements of the Lie algebra

su(N,C) = {X ∈ Gl(N) | X + X† = 0 and tr
(
X
)

= 0}.

associated to the Lie group SU(N,C).
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Chapter 1. Gauge Fields on a Lattice

Definition 1.8. The Hamiltonian

H
(
[U, P ]

)
= Ekin

(
[P ]
)

+ SG
(
[U ]

)
(1.5)

depends on the set of link matrices [U ] and its conjugated momenta [P ]. It
consists of the kinetic energy Ekin and the Wilson action SG.

The kinetic energy is associated with the set of momenta [P ] and reads

Ekin

(
[P ]
)

= 1
2
∑

x

∑

µ=0,1
tr
(
P 2
x,µ

)
. (1.6)

The Hamilton operator induces the Hamiltonian equations of motion:

∂H
(
[U, P ]

)

∂Ux,µ

= −∂Px,µ
∂t

= −Ṗx,µ

and
∂H

(
[U, P ]

)

∂Px,µ
= ∂Ux,µ

∂t
= U̇x,µ.

Note that the time derivatives U̇x,µ and Ṗx,µ do not depend on real time but on
a fictious computer time. This means the Hamilton operator and its equations
of motion are quite artificial because the momenta and the time are factitious.
Nevertheless, we can develop formulas to compute the Hamiltonian equations
of motion.

1.4 Hamiltonian Equations of Motion
The Hamiltonian equations of motion read

∂H
(
[U, P ]

)

∂Px,µ
= U̇x,µ = iPx,µUx,µ (1.7)

and
∂H

(
[U, P ]

)

∂Ux,µ

= −Ṗx,µ = −i β
N

{
Ux,µVx,µ

}

TA
(1.8)

with traceless and anti-hermitian operator
{
Ux,µVx,µ

}

TA
= 1

2Wx,µ −
1

2N tr
(
Wx,µ

)
· IN . (1.9)

using Wx,µ = Ux,µVx,µ − V †
x,µU

†
x,µ. The variable Vx,µ is called sum of staples as

mentioned in definition 1.3.

1.4.1 Time Derivatives of the Links
The differential equation

U̇x,µ = iPx,µ · Ux,µ. (1.10)
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1.4. Hamiltonian Equations of Motion

can be motivated from the structure of the links and the momenta as follows:
The elements Ux,µ of the Lie group SU(N,C) ca be identified with the (N+1)-
dimensional unit sphere

SN+1 = {x ∈ RN+1 with ∥x∥2 = 1}.

It is possible to define a small rotation

R : SU(N,C) → SU(N,C), Ux,µ 7→ Ũx,µ = R · Ux,µ (1.11)

on the unit sphere SN+1. Every small rotation can be seen as infinitesimal
transformation

R = IN + δR (1.12)
which consists of the identity and an infinitesimal rotation δR with δ → 0.
It follows

Ũx,µ
(1.11)= R · Ux,µ

(1.12)= (IN + δR) · Ux,µ = Ux,µ + δR · Ux,µ = Ux,µ + U̇x,µ

and thus
U̇x,µ = δR · Ux,µ. (1.13)

Lemma 1.9. The infinitesimal rotation matrices δR are elements of the Lie
algebra su(N,C). They can be identified with the momenta Px,µ via

δR = iPx,µ. (1.14)

Proof. We show that the infinitesimal rotation matrices δR have to be traceless
and anti-hermitian.
Because we use the Lie group properties, the fact that the rotation matrix R
is situated in the special unitary Lie group is the crucial point in this proof.

• Due to the fact that R is unitary, δR has to be anti-hermitian: The
inverse of R reads

R−1 = R† = (IN + δR)† = IN + δR†.

It holds

IN = R ·R−1 = (IN + δR) · (IN + δR†) = IN + δR† + δR + δ2RR†.

After a linearization we get

IN
.= IN + δR† + δR

and thus δR has to be anti-hermitian, i. e. δR = −δR†.

• Since R is a special matrix, i. e. det(R) = 1, it follows that δR has to
be traceless: Using the identity

det
(
exp(δR)

)
= exp

(
tr
(
δR
))

9



Chapter 1. Gauge Fields on a Lattice

and the Taylor expansion

R = IN + δR + 1
2
(
δR
)2

+ . . . = exp(δR)

of R, we get

1 = det(R) = det
(
exp(δR)

)
= exp

(
tr
(
δR
))
.

Hence, δR has to be traceless.

The equation of motion
U̇x,µ = iPx,µ · Ux,µ. (1.10)

immediately follows from (1.13) and (1.14).

1.4.2 Time Derivatives of the Momenta
The derivation of the equation of motion for the momenta needs a few consid-
erations: Due to the energy conservation, it holds

Ḣ
(
[U, P ]

)
= Ėkin

(
[P ]
)

+ ṠG
(
[U ]

)
= 0.

Thus we have to deduce the time derivatives of the kinetic energy and the
Wilson action to get a concrete formula for Ḣ: While it is evident that

Ėkin

(
[P ]
)

= 1
2
∑

x

∑

µ=0,1
tr
(
Ṗx,µPx,µ + Px,µṖx,µ

)

=
∑

x

∑

µ=0,1
tr
(
Ṗx,µPx,µ

)
(1.15)

holds, the calculation of the derivative of the Wilson action

ṠG
(
[U ]

)
= − β

2N
∑

x

∑

µ=0,1
tr
(
U̇x,µVx,µ + V †

x,µU̇
†
x,µ

)
(1.16)

requires some additional work.

The derivative of the Wilson action

We start with the Wilson action and use the property (A.4) of the trace:

SG
(
[U ]

)
=
∑

x

β

(
1− 1

N
Re
(
tr
(
U01(x)

)))

=
∑

x

β
(
1− 1

2N tr
(
U01(x) + U †

01(x)
))
.

10



1.4. Hamiltonian Equations of Motion

Then, we replace the plaquette variable U01(x) with the product of links (see
equation (1.2)) and rewrite the Wilson action as

SG
(
[U ]

)
= − β

2N
∑

x

(
tr
(
Ux,0Ux+a0̂,1U

†
x+a1̂,0U

†
x,1 +

(
Ux,0Ux+a0̂,1U

†
x+a1̂,0U

†
x,1

)†))

= − β

2N
∑

x

(
tr
(
Ux,0Ux+a0̂,1U

†
x+a1̂,0U

†
x,1 + Ux,1Ux+a1̂,0U

†
x+a0̂,1U

†
x,0

))
.

The time derivative ṠG
(
[U ]

)
of the Wilson action can be computed in a

straightforward way. Because a reordering of the matrix product has no effect
on the trace (see equation (A.3)), the time derivations of the links are placed
at the beginning and the end of a product of links.

ṠG
(
[U ]

)
= − β

2N
∑

x

tr
(

U̇x,0Ux+a0̂,1U
†
x+a1̂,0U

†
x,1 + U̇x,1Ux+a1̂,0U

†
x+a0̂,1U

†
x,0

+ U̇x+a0̂,1U
†
x+a1̂,0U

†
x,1Ux,0 + U̇x+a1̂,0U

†
x+a0̂,1U

†
x,0Ux,1

+ U †
x,1Ux,0Ux+a0̂,1U̇

†
x+a1̂,0 + U †

x,0Ux,1Ux+a1̂,0U̇
†
x+a0̂,1

+ Ux,0Ux+a0̂,1U
†
x+a1̂,0U̇

†
x,1 + Ux,1Ux+a1̂,0U

†
x+a0̂,1U̇

†
x,0

)
(1.17)

Taking account of some additional information, we simplify this expression.
Since we sum over all lattice sites x, we can shift some indices. This will be
done in such a way that we can factorise the time derivatives of the links, e.g.

x + a1̂, 0 → x, 0 and x + a0̂, 1 → x, 1.

The shifts in direction −0 and −1 imply the changes

x + a0̂, 1 −0−→ x, 1
x + a1̂, 0 −0−→ x + a(1̂− 0̂), 0,

x, 1 −0−→ x− a0̂, 1,
x, 0 −0−→ x− a0̂, 0,

x + a1̂, 0 −1−→ x, 0,
x + a0̂, 1 −1−→ x + a(0̂− 1̂), 1,

x, 0 −1−→ x− a1̂, 0,
x, 1 −1−→ x− a1̂, 1.

Using these shifts and equation (1.17), we get

∑

x

tr
(
U̇x,0Ux+a0̂,1U

†
x+a1̂,0U

†
x,1 + U̇x+a1̂,0U

†
x+a0̂,1U

†
x,0Ux,1

)

=
∑

x

tr
(
U̇x,0

(
Ux+a0̂,1U

†
x+a1̂,0U

†
x,1 + U †

x+a(0̂−1̂),1U
†
x−a1̂,0Ux−a1̂,1

))

and
∑

x

tr
(
U̇x,1Ux+a1̂,0U

†
x+a0̂,1U

†
x,0 + U̇x+a0̂,1U

†
x+a1̂,0U

†
x,1Ux,0

)

=
∑

x

tr
(
U̇x,1

(
Ux+a1̂,0U

†
x+a0̂,1U

†
x,0 + U †

x+a(1̂−0̂),0U
†
x−a0̂,1Ux−a0̂,0

))
.
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Chapter 1. Gauge Fields on a Lattice

The inner sums of the expressions above consist of the sum of staples of the
links Ux,0 and Ux,1. This implies

∑

x

tr
(
U̇x,0Ux+a0̂,1U

†
x+a1̂,0U

†
x,1 + U̇x+a1̂,0U

†
x+a0̂,1U

†
x,0Ux,1

)
=
∑

x

tr
(
U̇x,0Vx,0

)

and
∑

x

tr
(
U̇x,1Ux+a1̂,0U

†
x+a0̂,1U

†
x,0 + U̇x+a0̂,1U

†
x+a1̂,0U

†
x,1Ux,0

)
=
∑

x

tr
(
U̇x,1Vx,1

)
.

The other 4 addends of equation (1.17) lead to the inverse expressions
∑

x

tr
(
U †
x,1Ux,0Ux+a0̂,1U̇

†
x+a1̂,0 + Ux,1Ux+a1̂,0U

†
x+a0̂,1U̇

†
x,0

)
=
∑

x

tr
(
V †
x,0U̇

†
x,0

)

and
∑

x

tr
(
U †
x,0Ux,1Ux+a1̂,0U̇

†
x+a0̂,1 + Ux,0Ux+a0̂,1U

†
x+a1̂,0U̇

†
x,1

)
=
∑

x

tr
(
V †
x,1U̇

†
x,1.
)

The insertion of these equations in the derivative of the Wilson action of equa-
tion (1.17) yields

ṠG
(
[U ]

)
= − β

2N
∑

x

tr
(
U̇x,0Vx,0 + U̇x,1Vx,1 + V †

x,0U̇
†
x,0 + V †

x,1U̇
†
x,1

)

= − β

2N
∑

x

∑

µ=0,1
tr
(
U̇x,µVx,µ + V †

x,µU̇
†
x,µ

)

and coincides with equation (1.16).

The derivative of the Hamiltonian

We can outline the derivative of the Hamiltonian

0 = Ḣ
(
[U, P ]

)
= Ėkin

(
[P ]
)

+ ṠG
(
[U ]

)

using the kinetic energy (1.15) and the Wilson action (1.16):

Ḣ
(
[U, P ]

)
=
∑

x

∑

µ=0,1
tr
(
Ṗx,µPx,µ

)
− β

2N
∑

x

∑

µ=0,1
tr
(
U̇x,µVx,µ + V †

x,µU̇
†
x,µ

)
.

Having in mind that we are seeking for the derivative of the momenta Ṗx,µ, we
replace U̇x,µ in ṠG

(
[U ]

)
with iPx,µUx,µ. Again, we use the property (A.3) of the

trace. Furthermore, Px,µ is hermitian, i. e. Px,µ = P †
x,µ. Thus the derivative

of the Wilson action is rearranged as

ṠG
(
[U ]

)
= − β

2N
∑

x

∑

µ=0,1
tr
(
iPx,µUx,µVx,µ + V †

x,µ

(
iPx,µUx,µ

)†)

= − β

2N
∑

x

∑

µ=0,1
tr
(
iPx,µUx,µVx,µ − iV †

x,µU
†
x,µP

†
x,µ

)

= −i β2N
∑

x

∑

µ=0,1
tr
((
Ux,µVx,µ − V †

x,µU
†
x,µ

)
Px,µ

)

12
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and inserted in the formula of the derivative of the Hamiltonian such that

Ḣ
(
[U, P ]

)
=
∑

x

∑

µ=0,1
tr
(
Ṗx,µPx,µ − i

β

2N
(
Ux,µVx,µ − V †

x,µU
†
x,µ

)
Px,µ

)

=
∑

x

∑

µ=0,1
tr

((
Ṗx,µ − i

β

2N
(
Ux,µVx,µ − V †

x,µU
†
x,µ

))
Px,µ

)

holds. Then we use the shortcut

Fx,µ := −i β2N
(
Ux,µVx,µ − V †

x,µU
†
x,µ

)
(1.18)

and insert it in the formula above:

0 = Ḣ
(
[U, P ]

)
=
∑

x

∑

µ=0,1
tr
((
Ṗx,µ + Fx,µ

)
Px,µ

)
.

The derivative of the momentum

It follows the sufficient condition

0 = tr
((
Ṗx,µ + Fx,µ

)
Px,µ

)
. (1.19)

for all sites x and all directions µ. Then we can determine the form of Ṗx,µ
with a consideration of the properties of the trace.
The most important feature is that the momentum Px,µ is traceless. Since
equation (1.19) holds for all traceless and hermitian matrices Px,µ, the matrix
Px,µ has to be multiplied with a constant times the identity,

Ṗx,µ + Fx,µ = c · IN ,

with so far unknown constant c. This means

Ṗx,µ = c · IN − Fx,µ. (1.20)

Due to the fact that the derivative Ṗx,µ of the momentum Px,µ also has to be
traceless, we can determine the constant via equation (1.20) considering the
trace:

tr
(
Ṗx,µ

)
= tr

(
c · IN − Fx,µ

)
= tr

(
c · IN

)
− tr

(
Fx,µ

)
= c ·N − tr

(
Fx,µ

)
.

With tr
(
Ṗx,µ

)
= 0 we yield

c = 1
N
tr
(
Fx,µ

)

and get the result

Ṗx,µ = 1
N
tr
(
Fx,µ

)
· IN − Fx,µ

13



Chapter 1. Gauge Fields on a Lattice

which can be rewritten by means of (1.18) as

Ṗx,µ = i
β

2N
(
Ux,µVx,µ − V †

x,µU
†
x,µ

)
− 1
N
tr
(
i
β

2N
(
Ux,µVx,µ − V †

x,µU
†
x,µ

))
· IN

With help of the notation of the traceless anti-hermitian operator of equation
(1.9) the equation of motion concerning the momenta amounts to

Ṗx,µ = i
β

N

{
Ux,µVx,µ

}

TA
. (1.8)

Hence, the Hamiltonian equations of motion are derived.

14



Chapter 2

Hybrid Monte Carlo Method

Our aim is to calculate the expectation value ⟨A⟩ (see equation (1.4)) of an
observable A over an ensemble of gauge field configurations, i. e.

⟨A⟩ =
∑

{U}
A(U)

exp
(
−S

(
[U ]

))

Z
, (2.1)

where the partition function reads

Z =
∑

{U}
exp

(
−S

(
U
))
.

Note that S
(
[U ]

)
denotes the Wilson action and {U} means all configurations.

We assume that the expectation value can not be calculated directly, so it has
to be computed by a numerical simulation. Thereby, the occurence of almost all
configurations is very small such that we need many configurations to reach the
correct expectation value ⟨A⟩. To scale down the computational effort, we need
a more sophisticated method called importance sampling. This is implemented
by choosing configurations according to the Boltzmann-distributed probability

pi := p
(
[U i]

)
= 1

Z
exp

(
−S

(
[U i]

))
(2.2)

such that configurations [U i] occurring with a high probability will be pre-
ferred. This approach is realized in the Metropolis Monte Carlo method and
can be improved to a Hybrid Monte Carlo method. The original idea of the
Hybrid Monte Carlo method has been described in [6]. It can also be found
in [4] and [7]. Section 2.1 is taken in large parts from [7]. For section 2.2, the
references [6] and [4] are used.

2.1 Metropolis Monte Carlo Method
The Metropolis Monte Carlo method is based on the principle of a Markov
process which is described below.
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Chapter 2. Hybrid Monte Carlo Method

2.1.1 Markov Process
A Markov process is a stochastic method which generates a new configuration
from one or more old configurations. Thereby, the probability p

(k)
i to find

configuration [U i] at time point k depends only on the previous configurations
themselves and not on the point in time. If the new configuration depends
only on its predecessor the Markov process is called Markov process of first
order.

Definition 2.1 (Stochastic matrix). A matrix T is called stochastic if and
only if its elements are greater than or equal to zero and if the sum over each
row is equal to one, i. e.

Tij ≥ 0 ∀i, j and
∑

j

Tij = 1 ∀i.

Theorem 2.2 (Perron-Frobenius). Let T be a stochastic matrix. Then there
exists a non-negative vector v with vT = v. This means v is a (left-) eigenvec-
tor of T with eigenvalue 1. If all elements Tij are larger than 0, the eigenvalue
1 is a simple one.

Let {[U ]} be a set of configurations. Then the Markov process will be created
with help of the transition probabilites T

(
[U i] → [U j]

)
=: Tij such that the

Markov chain reads

[U0] T01−→ [U1] T12−→ [U2] T23−→ . . . (2.3)

with indices 0, 1, 2, . . . representing the elements of an index set.
We are interested in the equilibrium distribution of the fields [U ], which is the
fixed point of the Markov process (2.3) under the conditions described as fol-
lows. First of all, the transition propabilities have to be ergodic, which means
that every possible configuration can be reached with a certain probability
from any other one. This property will be denoted with Tij ≥ 0. Furthermore,
the stability criterion ∑

i

p
(k+1)
i Tij = p

(k)
j ∀j (2.4)

has to be fulfilled. The stability criterion can be written in a more compact
form as

p(k+1) = p(k)T (2.5)

with row vector p(k) =
(
p

(k)
1 , p

(k)
2 , . . .

)
and transition matrix T . The row vector

p(k) represents the probability distribution of the configurations after k steps
in the Markov chain. Due to the theorem of Perron-Frobenius we get for
limk→∞ p(k) = p the fixed point equation pT = p. With strong ergodicity
Tij > 0, the fixed point p will be unique.
The aim of the Metropolis algorithm is to construct the transition matrix T
to reach a prescribed equilibrium distribution p, in our case the Boltzmann
distribution (see equation (2.2)). For this purpose, we use the detailed balance
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2.1. Metropolis Monte Carlo Method

condition, which is a stronger requirement than the stability criterion, but
easier to handle:

piTij = pjTji. (2.6)
Note that the detailed balance condition is not necessary but sufficient. We
obtain the stability criterion (2.4) if we sum over i and use definition of a
stochastic matrix (see definition 2.1):

∑

i

piTij =
∑

i

pjTji = pj
∑

i

Tji = pj.

2.1.2 Metropolis Algorithm
With the aforementioned concepts we can introduce the Metropolis algorithm
and analyze the acceptance and update step.

Algorithm 2.1 (Metropolis Algorithm). Let pi, resp. pj denote the probability
for the occurence of the configuration [U i], resp. [U j]. The transition matrix
will be created from an initial field configuration [U i] by alternating an update
and an acceptance step:

1. Update step:
Create a test configuration [U j] randomly.

2. Acceptance step:
Accept the configuration [U j] with transition probability

Tij = min
(
1, pj
pi

)
. (2.7)

Acceptance step

The acceptance step has to fulfill the stability criterion (2.4) to reach the fixed
point of the Markov process. Indeed, it satisfies the detailed balance condition
(2.6) because it holds

piTij = pi ·min
(
1, pj
pi

)
= min

(
pi, pj

)
= pj ·min

(pi
pj
, 1
)

= pjTji.

Hence, with strong ergodicity (Tij > 0 for all i, j) the Markov process will tend
to a unique fixed point. Concerning the action of the model, the fixed point
should be Boltzmann distributed, i. e. the probability for each configuration
[U i] reads

pi = 1
Z
· exp

(
−S

(
[U i]

) )
.

With ∆S := S
(
[U j]

)
− S

(
[U i]

)
the transition probability can be rewritten as

Tij = min
(

1, exp
(
−∆S

))
. (2.8)

This means the new configuration will always be accepted if the action has
become smaller. Otherwise, a uniformly distributed random number r ∈ [0, 1]
has to be generated and the new configuration will be accepted if r < Tij holds.
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Update step

The update can be carried out by changing one or more elements of the old
configuration. If we replace just one element we call it local update. In doing
so, we will get a high acceptance rate since the difference of two actions will
be small.
Refreshing all elements of a given configuration is called global update and
produces a lower acceptance rate because the average difference of two succes-
sive actions S([U i]) and S([U j]) will be relatively large. Thus the local update
will naturally be favoured in a Metropolis Monte Carlo algorithm unless the
acceptance step of a local update will cause as much computational effort as
the acceptance step of a global update.

2.2 Hybrid Monte Carlo Method
In quantum field theories, we can distinguish between two different sorts of
fields, the bosonic and the fermionic field. If we do not just consider the bosonic
but also the fermionic field, the acceptance step comprises the inversion the of
a large matrix called Dirac operator. Unfortunately, this inversion needs much
computational time such that one global update will be preferred instead of
many local ones.
Nevertheless to reach a high acceptance rate the idea is to replace the action
S[U ] with the Hamiltonian H([U, P ]) (see definition 1.8) and combine the
Metropolis method with a Molecular Dynamics method. For this purpose, we
use

pi = 1
Z
· exp

(
−H

(
[U i, P i]

) )
(2.9)

as new probability distribution. Since the Hamiltonian is a constant in time
the advantages of getting a high acceptance rate and saving many matrix
inversions by performing a global update are combined.

Molecular Dynamics Method

In the Molecular Dynamics method, the Hamiltonian equations of motion

∂H
(
[U(t), P (t)]

)

∂U
= −∂P (t)

∂t
= −Ṗ (t)

and
∂H

(
[U(t), P (t)]

)

∂P
= ∂U(t)

∂t
= U̇(t)

will be calculated by numerical integration. These equations define a trajectory
[U(t), P (t)] through phase space where the variable t denotes the fictious time.
Starting from an initial configuration [U i, P i] at time t0 = 0, the new configu-
ration [U j, P j] at time t will be obtained via a numerical integration through
phase space.
Because the Hamiltonian is conserved in time, the Hamiltonians of two succes-
sive configurations will be the same up to the numerical errors of the integration
method.
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2.2. Hybrid Monte Carlo Method

Algorithm 2.2 (Hybrid Monte Carlo Algorithm). During the Hybrid Monte
Carlo algorithm the following steps will be carried out:

1. Select an initial configuration [U i] randomly.

2. Create conjugated momenta [P i] randomly according to equation (2.11).

3. Reach the new configuration [U j, P j] by performing a Molecular Dynam-
ics step.

4. Compute the difference of the Hamiltonians as ∆H := Hj −Hi.

5. Accept the new configuration with acceptance probability

PA
(
[U i, P i] → [U j, P j]

)
= min

(
1, pj
pi

)
(2.9)= min

(
1, exp(−∆H)

)
. (2.10)

6. Start at step 2.

Choice of the initial field and momenta refreshment

The initial field configuration [U ] can be chosen arbitrarily, for example with
uniformly distributed random numbers, because the system will converge to
the unique fixed point.
The conjugated momenta [P ] are chosen at random from a Gaussian distribu-
tion

PG([P ]) ∼ exp
(
−1

2
∑

x,µ

Tr(P 2
x,µ)

)
= exp

(
−Ekin

(
[P ]
))

(2.11)

with mean 0 and variance 1. It is important to generate a new field of momenta
in each step. This has to be done regardless of acceptance or rejection of the
new configuration to ensure ergodicity.

Acceptance step

During the acceptance step, the configuration [U i, P i] and its successor [U j, P j]
have to be considered. The total energy in terms of the Hamiltonian

H
(
[U, P ]

)
= Ekin

(
[P ]
)

+ S
(
[U ]

)

from equation (1.5) is used to decide whether the new configuration will be
accepted or rejected.
If the energy becomes smaller, the new configuration [U j, P j] is always ac-
cepted. Otherwise a uniformly distributed random number r ∈ [0, 1) has to be
generated. In the case of r being smaller or equal than PA

(
[U i, P i] → [U j, P j]

)

given in equation (2.10) the new configuration is also accepted. The configu-
ration [U i] is replaced by [U j] to proceed in the next step. To save computing
time the value of the action S([U i]) can be changed to S([U j]).
Whenever the acceptance probability PA

(
[U i, P i] → [U j, P j]

)
is smaller than

the random number r, the new configuration is dismissed and the old one [U i]
is used again in the next step.
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Convergence of the Markov chain

It is essential for the Hybrid Monte Carlo method that the Markov process
converges to the fixed point of the equlibrium distribution of the field config-
urations [U ].To ensure this, the numerical integration scheme has to fulfill the
detailed balance condition concerning the action S([U ]), i. e.

piTij = pjTji with pi ∼ exp
(
−S

(
[U i]

))
.

Again, the total transition probability to reach configuration [U j] from [U i] is
denoted with Tij. Compared with the transition probability of the Metropolis
Monte Carlo method, the transition probability Tij for the Hybrid Monte Carlo
method is a complicated expression. It is obtained via an integration of the
different probabilities PA,PG and PM over the conjugated momenta:

Tij =
∫

[dP idP j] PA

(
[U i, P i] → [U j, P j]

)
PG([P i])PM

(
[U i, P i] → [U j, P j]

)
.

(2.12)
PM

(
[U i, P i] → [U j, P j]

)
denotes the probability to reach the new configuration

[U j, P j] from the old one [U j, P j] via the molecular dynamics step.

Lemma 2.3. (Time reversibility of the integrator) The numerical method used
in the Hybrid Monte Carlo method has to be time-reversible, (i. e. in mathe-
matical notation symmetric) to fulfill the detailed balance condition

piTij = pjTji

with pi ∼ exp
(
−S

(
[U i]

))
and transition probability.

Tij =
∫

[dP idP j] PA

(
[U i, P i] → [U j, P j]

)
PG([P i])PM

(
[U i, P i] → [U j, P j]

)
.

Proof. The time-reversibility means that the probability to attain configura-
tion [U j, P j] from configuration [U i, P i] is the same as the probability to get
[U i,−P i] from the start configuration [U j,−P j] with reversed momenta [−P j].
It is essential for the proof of the detailed balance condition (2.6) that the nu-
merical integration scheme for solving the equations of motion is symmetric or
time-reversible. This means that the mapping [U i, P i] → [U j, P j] is reversible
in the sense that

PM

(
[U i, P i] → [U j, P j]

)
= PM

(
[U j,−P j] → [U i,−P i]

)
. (2.13)

Furthermore, it holds

piPG

(
[P i]) = exp

(
−H([U i, P i])

)

since S
(
[U i]

)
+ E

kin

(
[P i]
) = H

(
[U i, P i]

)
. Using the formula (2.10) for the
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acceptance probability, we attain

pi · PG([P i]) · PA
(
[U i, P i] → [U j, P j]

)
=

exp
(
−H

(
[U i, P i]

))
·min

(
1, exp(−∆H)

)
=

exp
(
−H

(
[U j, P j]

))
·min

(
exp

(
∆H, 1

)
=

pj · PG([P j]) · PA
(
[U j, P j] → [U i, P i]

)
.

Thus, we yield with equation (2.13)

piTij = pi

∫
[dP idP j] PG([P i])PA

(
[U i, P i] → [U j, P j]

)
PM

(
[U i, P i] → [U j, P j]

)

= pj

∫
[dP idP j] PG([P j])·PA

(
[U j, P j] → [U i, P i]

)
PM

(
[U j,−P j] → [U i,−P i]

)
.

After changing the sign of the momenta (i. e. [P i] ↔ [−P i] and [P j] ↔ [−P j])
we get

piTij = pj

∫
[−dP i − dP j] PG([−P j]) · PA

(
[U j,−P j] → [U i,−P i]

)

PM

(
[U j, P j] → [U i, P i]

)

The Hamiltonian H does not depend on the sign of the momenta such that the
gaussian distribution and the acceptance probability both remain unchanged
after a change of a sign. Since [dP idP j] equals [−dP i − dP j], we can rewrite
the last equation as

piTij = pj

∫
[dP idP j] PG([P j]) · PA

(
[U j, P j] → [U i, P i]

)

· PM

(
[U j, P j] → [U i, P i]

)
= pjTji.

Lemma 2.4 (Area-preservation). Let the numerical integration method used
in the Hybrid Monte Carlo method be time-reversible. If the numerical inte-
gration scheme is also area-preservating (i. e. symplectic), the Markov process
converges to the fixed point of the equlibrium distribution of the field configu-
rations [U ].

Proof. We have the Boltzmann- and Gaussian-distributed probabilities

p([U ]) ∼ exp
(
−S

(
[U ]

))
and PG([P ]) ∼ exp

(
−Ekin

(
[P ]
))
.

Both probabilities are normalized such that
∫

[dU ]p([U ]) = 1 and
∫

[dP ]PG([P ]) = 1
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Chapter 2. Hybrid Monte Carlo Method

holds. It follows

p([U ])PG([P ]) = 1
n

exp
(
−S

(
[U ]

))
exp

(
−Ekin

(
[P ]
))

= 1
n

exp
(
−H

(
[U, P ]

))

with a normalization constant

n =
∫

[dUdP ] exp
(
−H

(
[U, P ]

))
.

The normalization factors should be the same for all configurations. That
means, the factor

ni =
∫

[dU idP i] exp
(
−H

(
[U i, P i]

))

of configuration [U j, P j] should be the same as the one of the succeeding con-
figuration [U j, P j], i. e.

nj =
∫

[dU jdP j] exp
(
−H

(
[U j, P j]

))

=
∫

[dU idP i] exp
(
−H

(
[U i, P i]

)
exp

(
−∆H

)

with ∆H = H[U j, P j]−H[U i, P i]. Using

⟨exp
(
−∆H

)
⟩ = 1

ni

∫
[dU idP i] exp

(
−H

(
[U i, P i]

)
exp

(
−∆H

)

it follows
nj = ni⟨exp

(
−∆H

)
⟩.

If the numerical integration method is area-preservating, it holds nj = ni.
Hence, the expectation value of ⟨exp

(
−∆H

)
⟩ has to be equal to one.

In case of no area-preservation, there has to be a correction in the acceptance
step to ensure this.
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Numerical Integration

In the previous chapters, the effective calculation of the expectation value ⟨A⟩
of a gauge field (see equation (2.1)) by a Hybrid Monte Carlo algorithm is
described. In doing so, the Hamiltonian

H
(
[U, P ]

)
= Ekin

(
[P ]
)

+ SG
(
[U ]

)

(see equation (1.5)) has to be evaluated.
For the numerical integration it is important to note that the kinetic energy
Ekin is composed of the traceless and hermitian momenta P whereas the Wilson
action SG depends on the link matrices U which are elements of the Lie group
SU(N,C).
The sets of links U and momenta P will be calculated in a Molecular Dynamic
step by means of solving the equations of motion

U̇(t) = iP (t)U(t) and Ṗ (t) = i
β

N

{
U(t)V (t)

}

TA

given in the equations (1.7) and (1.8) numerically. For convenience, these
equations will be denoted as

U̇(t) = f
(
U(t), iP (t)

)
and Ṗ (t) = g

(
[U(t)]

)
. (3.1)

Since the sum of staples V (t) (see definition 1.3) consists of the surrounding
links of U(t), we consider it as fixed. Thus Ṗ (t) can be expressed as function
g of the whole field [U(t)]. The variables β and N are constants.
The numerical integration during the Molecular Dynamic step is the crucial
point in the Hybrid Monte Carlo algorithm and will be investigated in detail in
this chapter.We start with discussing the properties of the integration method
and present known methods for computing differential equations in Lie groups.
Afterwards, partitioned Runge-Kutta methods are introduced and brought
forward on matrix Lie groups. These methods can be found in [2]. Finally, we
place our emphasis on solving the equations of motion (3.1) with partitioned
Runge-Kutta methods and check the time-reversibility and convergence order
of this scheme.
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Chapter 3. Numerical Integration

3.1 Desired Properties of the Integration Scheme
A suitable integration scheme has to fulfill several properties:

• First of all, the numerical solution
(
U, P

)
has to consist of a link U situ-

ated in the Lie group and an associated momentum P , which is traceless
and hermitian.

• Additionally, the scheme has to be symmetric or time-reversible to fulfill
the detailed balance condition required in the Hybrid Monte Carlo algo-
rithm.
Note that the concept of symmetry is widely used in mathematical lan-
guage whereas the item time-reversibility occurs frequently in physical
literature.

• The integration should also be volume-preservating. If this is not the
case, a correction in the acceptance step has to be performed. The
volume-preservation will not be investigated in this work.

• Furthermore, preferably a high convergence order should be obtained to
allow larger step sizes and reduce computing time.

3.1.1 Differential Equations on Lie Groups
Let a matrix Lie group G ∈ GL(n) be given. (GL(n) is the set of all quadratic
and invertible matrices of dimension n×n.) A Lie group is also a differentiable
manifold and has a tangent space TUG in every point U ∈ G. The tangent
space g = TIG at the identity I is the appropriate Lie algebra of the Lie group
G. Note that the dependence of the Lie algebra element A on the Lie group
element U is expressed in the whole section by AU .

Lemma 3.1 (Differential equations on manifolds). Let U be an element of the
Lie group G and AU an element of its associated Lie Algebra g. Then it holds:

• AUU is an element of the tangent space TUG := {AUU |AU ∈ g}.

• U̇ = AUU defines a differential equation on the manifold G.

Proof. With AU ∈ g and the definition of the tangent space TIG there exists a
differentiable path α(t) in G with α(0) = I and α̇(0) = AU . For a fixed U ∈ G
the path γ(t) = α(t)U satisfies γ(0) = U and γ̇(0) = AUU .
Thus AUU is an element of the tangent space TUG and U̇ = AUU defines a
differential equation on the manifold G.

Theorem 3.2. Let G be a matrix Lie goup and g its Lie algebra. The solution
of the differential equation

U̇ = AUU (3.2)

satisfies U(t) ∈ G for all t, if AU ∈ g for all U ∈ G and the initial value U0 is
an element of the Lie group G.
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It is a consequence of the last theorem that the differential equation U̇(t) =
AU(t)U(t) can be solved by finding a suitable expression Ω(t) in the Lie alge-
bra g and map it into the Lie group G. One way to get the solution of the
differential equation (3.2) is constituted by the theorem of Magnus.

Theorem 3.3 (Magnus, 1954). The solution of U̇(t) = AU(t)U(t) with AU(t) ∈
g and U(t) in the appropriate Lie group G can be written as U(t) = exp

(
Ω(t)

)
U0

with U0 ∈ G and Ω(t) definded by the derivative of the inverse exponential map

Ω̇(t) = d exp−1
Ω

(
AU(t)

)
=
∑

k≥0

Bk

k! ad
k
Ω

(
AU(t)

)
(3.3)

with initial value Ω(t0) = 0. As long as ∥Ω(t)∥ < π, the convergence of the
d exp−1

Ω expansion is assured.

There are still some unknowns in this theorem that have to be explained.

Definition 3.4 (Bernoulli numbers). The elements Bk in theorem 3.3 are the
Bernoulli numbers, defined by

∑

k≥0

Bk

k! x
k = x

exp(x)− 1 .

The first few Bernoulli numbers are B0 = 1, B1 = −1
2 , B2 = 1

6 , B3 = 0.

Definition 3.5 (Adjoint operator). The adjoint operator adΩ(A) is a linear
operator

ad : g → g , A 7→ adΩ(A) = [Ω, A]

for a fixed Ω and uses matrix commutators.
The adjoint operator can be used iteratively, such that adkΩ denotes the k-th
iterated application of the linear operator adΩ. By convention, ad0

Ω(A) is set
to A.

Differential equations on the special unitary Lie group

Let us return to the equation U̇(t) = f
(
U(t), iP (t)

)
= iP (t)U(t). Due to the

fact that U(t) is an element of the Lie group SU(N,C) and iP (t) its associated
Lie algebra element, this is a special case of equation (3.2).
Applying lemma 3.1, we know that

U̇(t) = iP (t)U(t)

is a differential equation on the Lie group SU(N,C). It follows from theorem
3.2 that this equation has a solution U(t) in SU(N,C) if we solve an initial
value problem with initial value U0 ∈ SU(N,C). This can be performed using
the theorem of Magnus above.
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3.1.2 Symmetry (= Time-Reversibility)
To ensure the convergence of the Markov process to the equilibrium distri-
bution, the symmetry is a necessary property of the integration method. We
investigate the symmetry of a numerical one-step scheme ϕh by the term of its
adjoint method ϕ∗h.

Definition 3.6 (Adjoint method). The adjoint method ϕ∗h of a method ϕh is
the inverse map of the original method with reversed time step −h, i. e. ϕ∗h
is identified with ϕ−1

−h. The index h expresses the dependence of the scheme on
the step size h.

As an example, we formulate the adjoint of the implicit midpoint rule:

1. We start with y1 = ϕh(y0) = y0 + h · f
(
0.5 · (y0 + y1)

)
.

2. The adjoint method will be obtained by reversing the time step, i. e.
exchange y1 ↔ y0 and h↔ −h. Thus we get

y0 = ϕ−h(y1) = y1 − h · f
(
0.5 · (y1 + y0)

)

as intermediate step.

3. Finally, we invert the map ϕ−h(y1). This means, the equation above is
solved for y1. We get the result

y1 = ϕ−1
−h(y0) = y0 + h · f

(
0.5 · (y1 + y0)

)

which is the adjoint method ϕ∗h(y0).

Definition 3.7 (Symmetry). A numerical one-step method ϕh is called sym-
metric or time-reversible, if it satisfies

ϕh ◦ ϕ−h = id or equivalently ϕh = ϕ−1
−h =: ϕ∗h.

For the implicit midpoint rule, it holds ϕh = ϕ∗h, thus this method is symmetric,
i. e. time-reversible.

3.1.3 Convergence Order
In general, the convergence order of a method is composed of the consistency
order and an additional stability criterion. For one step schemes the stability
condition is automatically fulfilled, such that the consistency and the conver-
gence order coincide.

Definition 3.8 (Consistency order). A method is called consistent, if the local
discretization error tends to zero for a step size h→ 0:

∥τ(h)∥ ≤ γ(h) with lim
h→0

γ(h) → 0.
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3.2. The Störmer-Verlet (= Leapfrog) Method

Thereby, the local discretization error τ(h) is defined as

τ(h) = ϕ(t0 + h)− ϕ1(h)
h

.

with numerical solution ϕ1 (after one step). ϕ(t) is the exact solution of the
initial value problem ϕ′ = f(t) with initial value ϕ(t0) = ϕ0. The method has
consistency order p, if ∥τ(h)∥ = O(hp) holds.

The consistency order will be obtained by expanding the exact and numerical
solution of the differential equation in a Taylor series and afterwards calculating
the local discretization error τ(h).
Since we solve the two equations for the links U and the momenta P simultane-
ously, we have to expand the exact solutions as well as the numerical solutions
U1 and P1 and consider both local discretization errors

τU(h) = U(t0 + h)− U1(h)
h

and τP (h) = P (t0 + h)− P1(h)
h

to get the consistency order of the system (U, P ).

Remark 3.9 (Numerical error after one trajectory). Let the convergence order
of a one-step scheme using the step size h be p. This implies a numerical error
of order hp+1 after one step.
If a whole trajectory of length τ = n·h is computed, the integration is performed
n times with step size h. After one trajectory, this implies a total error of order

n · hp+1 = τ

h
· hp+1 = hp.

3.2 The Störmer-Verlet (= Leapfrog) Method
We start with the investigation of the properties symmetry and convergence
order on the basis of already known one-step methods applied to the problem
of solving the equations of motion of (3.1). First of all, these methods are
formulated for the general system of differential equations

ẏ = f(y, z), ż = g(y, z)

with initial values y(t0) = y0 and z(t0) = z0. They can be found in [2] as well.

3.2.1 Lie-Euler Method
Definition 3.10 (Explicit Euler Method). The explicit Euler method reads

(
y1
z1

)
= ϕh

(
y0
z0

)
,

y1 = y0 + h · f(y0, z0)
z1 = z0 + h · g(y0, z0).

(3.4)

Lemma 3.11 (Properties of the explicit Euler scheme). The explicit Euler
scheme is not symmetric and has convergence order one because ∥τy∥ = O(h) =
∥τz∥.
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Chapter 3. Numerical Integration

Proof. For symmetry, it has to hold ϕ∗h = ϕh. The explicit Euler scheme is
not symmetric, because exchanging y0 ↔ y1, z0 ↔ z1 and h ↔ −h yields the
adjoint method

ϕ∗h

(
y0
z0

)
=
(
y0 + h · f(y1, z1)
z0 + h · g(y1, z1)

)

and thus ϕ∗h ̸= ϕh.
The consistency order of the scheme will be obtained by comparing the Tay-
lor series of the exact and numerical solution of the system (3.4). The local
discretization errors read

τy(h) =
y0 + hẏ(t0) + h2

2 ÿ(t0)−
(
y0 + hf(y0, z0)

)

h
=

h2

2 ÿ(t0)
h

= h

2 ÿ(t0)

and τz(h) =
z0 + hż(t0) + h2

2 z̈(t0)−
(
y0 + hg(y0, z0)

)

h
=

h2

2 z̈(t0)
h

= h

2 z̈(t0).

such that the convergence order is one.

This method is not symmetric, and has just convergence order one such that
it is not suitable for simulation of gauge theories.

Lie Euler Method

Nevertheless, the explicit Euler method serves as an example to restate a
general method as a method for solving differential equations on a Lie group.
In this case, it is called Lie-Euler method. For the equations of motion

∂H
(
[U, P ]

)

∂U
= −Ṗ = −g

([
U(t)

])
and

∂H
(
[U, P ]

)

∂P
= U̇ = iP (t)U(t)

in phase space (U, P ) with initial values (U(t0), P (t0)) = (U0, P0) it holds
U1 = U0 +hU̇(t0) = U0 +hiP (t0)U(t0) = (I +hiP0)U0 = exp(hiP0)U0 +O(h2)
Thus, the method can be changed to

(
U1
P1

)
= ϕh

(
U0
P0

)
,

U1 = exp(hiP0)U0 ∈ SU(N,C)
iP1 = iP0 + h · ig(U0) ∈ su(N,C)

(3.5)

Symplectic Lie Euler Method

We can reformulate the explicit Lie-Euler method to the so-called symplectic
Lie-Euler method by evaluating the Hamilonian equations of motion at (U0, P1)
and get
(
U1
P1

)
= ϕh

(
U0
P0

)
,

{
U1 = exp(hiP1)U0
P1 = P0 + hg(U0)

}
or
{
U1 = exp(hiP0)U0
P1 = P0 + hg(U1)

}
(3.6)

which is a symplectic (i. e. a volume-preservating) method of order one. It
can be easily seen that this method is not symmetric.
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3.2. The Störmer-Verlet (= Leapfrog) Method

3.2.2 Störmer-Verlet Method
The combination of the two symplectic Euler methods from equation (3.6)
yields the Störmer-Verlet scheme which is also mentioned as Leapfrog method.

Definition 3.12 (Störmer-Verlet Method). The Störmer-Verlet scheme reads

P 1
2

= P0 + h

2g(U0), U1 = exp
(
hiP 1

2

)
U0, P1 = P 1

2
+ h

2g(U1). (3.7)

It is known as symmetric(i.e time-reversible), symplectic (i. e. volume-preserving)
and has convergence order two. Due to its properties, this method is used in
many applications, for example in simulations of lattice gauge fields. In these
simulations, a whole trajectory is computed at once. During the calculation
of one trajectory with length τ = n · h, the integration (3.7) is carried out n
times with step size h:

P 1
2

= P0 + h

2g(U0), U1 = exp
(
hiP 1

2

)
U0, P1 = P 1

2
+ h

2g(U1),

P 3
2

= P1 + h

2g(U1), U2 = exp
(
hiP 3

2

)
U1, P2 = P 3

2
+ h

2g(U2),
... ... ...

Pn− 1
2

= Pn−1 + h

2g(Un−1), Un = exp
(
hiPn− 1

2

)
Un−1, Pn = Pn− 1

2
+ h

2g(Un).

In doing so, we start with an initial configuration (U(t0), P (t0)) at time t0.
Then, n trajectories of step size h are computed such that the final configura-
tion (U(t0 + τ), P (t0 + τ)) is reached.
The Störmer-Verlet method can be summarized in the following algorithm:

Algorithm 3.1 (Leapfrog method).
Let the initial values (U(t0), P (t0)) at time t0 be given. For simplicity, t0 is
set to zero. Thereby, the integration can be divided in three parts:

1. Start with carrying out one explicit Euler half-step for the momentum

• Ph
2

= P0 + h
2 · g

(
U0
)
.

2. For k = 1, . . . , n and l = 1, . . . , n− 1 calculate alternately

• Uk·h = exp
(
P(k− 1

2 )·h
)
· U(k−1)·h

• P(l+ 1
2 )·h = P(l− 1

2 )·h + h · g
(
Ul·h

)

such that the iteration ends with Uτ ) and Pτ−h
2
. In this part, the inte-

gration step size will be h.

3. The last half-step reads

• Pτ = Pτ−h
2

+ h
2 · g

(
Uτ

)
.
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Note that the integration uses the step size h in the main part but only step
size h

2 in the first and last halfstep to evaluate each link U and each momentum
P at two different points in time.
The convergence order of the Störmer-Verlet method is 2. This implies a
numerical error of order h3 after one step. Since the integration is performed
n = τ

h
times with an error of order h3, the numerical error after one trajectory

is of order h2 (see remark 3.9).

3.3 Partitioned Runge-Kutta Methods for Lie
Groups

3.3.1 Partitioned Runge-Kutta Methods in General
Our aim is to reformulate the Störmer-Verlet method as implicit partitioned
Runge-Kutta method. As the investigated Störmer-Verlet method it also has
to be symmetric and should be volume-preserving. Additionally, we wish to
get a method of order greater than two to enlarge the step sizes, thus we have
to investigate the attainable order of the partitioned Runge-Kutta method.

Definition 3.13 (Partitioned Runge-Kutta Method). A coupled system

ẏ = f(y, z), ż = g(y, z)

of ordinary differential equations may be solved by a partitioned Runge-Kutta
method of the form

y1 = y0 + h
s∑

j=1
bjKj, z1 = z0 + h

s∑

j=1
b̂jLj,

Kj = f
(
y0 + h

s∑

k=1
aj,kKk, z0 + h

s∑

k=1
âj,kLk

)
,

Lj = g
(
y0 + h

s∑

k=1
aj,kKk, z0 + h

s∑

k=1
âj,kLk

)

with initial values y0 and z0.The coefficients bj, ajk,b̂j, âjk and increments Kj

and Lj belong to the s stages of y1 and z1.

Definition 3.14 (Butcher tableau). The coefficients bj, aj,k,b̂j, âj,k of the Runge-
Kutta scheme can be denoted in a Butcher tableau. For example, the Butcher
tableau for the coefficients aj,k and bj (j, k = 1, . . . , s) looks like

a1 a1,1 a1,2 . . . a1,s
a2 a2,1 a2,2 . . . a2,s
... ... ... . . . ...
as as,1 as,2 . . . as,s

b1 b2 . . . bs.
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3.3. Partitioned Runge-Kutta Methods for Lie Groups

The entries of the left column aj express the row sums of the coefficients aj,k,
i. e. aj = ∑s

k=1 aj,k.

Using these coefficients, we can distinguish between explicit and implicit Runge-
Kutta methods: We have an

• explicit Runge-Kutta method if aj,k = 0 ∀k ≥ j

• and an implicit Runge-Kutta method if aj,k ̸= 0 for one or more k ≥ j.

Theorem 3.15 (Symmetric Runge-Kutta scheme). The adjoint method of
an s-stage Runge-Kutta method defined by definition 3.13 is again an s-stage
Runge-Kutta method. Its coefficients are given by

a∗j,k = bs+1−k − as+1−j,s+1−k , b∗j = bs+1−k,

â∗j,k = b̂s+1−j − âs+1−j,s+1−k , b̂∗j = b̂s+1−k.

The Runge-Kutta method of definition 3.13 is symmetric if

as+1−j,s+1−k + aj,k = bk and âs+1−j,s+1−k + âj,k = b̂k for all j, k. (3.8)

Explicit Runge-Kutta schemes can not fulfill equations (3.8) with j = k and
thus can not be symmetric. So they are not suitable to be adopted in the
simulations of gauge fields and hence we have to investigate implicit partitioned
Runge-Kutta methods.

Runge-Kutta Method for Lie Groups

Transferred to our problem of solving the differential equations (3.1)

U̇(t) = f
(
U(t), iP (t)

)
and iṖ (t) = ig

(
[U(t)]

)
.

with initial values U(t0) ∈ SU(N,C) and iP (t0) ∈ su(N,C), the partitioned
Runge-Kutta method reads as follows:

Calculate U1 = U0 + h
s∑

j=1
bjKj and iP1 = iP0 + h

s∑

j=1
b̂jLj with increments

Kj = f
(
U0 + h

s∑

k=1
aj,kKk, P0 + h

s∑

k=1
âj,kLk

)
and Lj = ig

(
U0 + h

s∑

k=1
aj,kKk

)

for the stages j = 1, . . . , s with the same coefficients bj, aj,k and b̂j, âj,k used
above.

The solution iP1 will be part of the Lie algebra su(N,C). Nevertheless, there
is a problem concerning the solution U1. The initial value U0 is an element of
SU(N,C), but the increments Kj are elements of the assosiated Lie algebra
su(N,C). Thus, U1 is a sum of one Lie group and Lie algebra elements and
therefore not in the Lie group.
However, we know that the differential equation U̇(t) = iP (t)U(t) can be
solved by finding a suitable expression Ω(t) in the Lie algebra su(N,C) and
map it into the Lie group. This needs some general considerations.
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3.3.2 Munthe-Kaas Method
Let G be a Lie group and g the appropriate Lie algebra. Consider the differ-
ential equation

U̇ = A(t)U(t) with A(t) ∈ g and U(t) ∈ G,

that should be solved by a Runge-Kutta method.
Following the idea of Munthe-Kaas that uses the exponential map as transfor-
mation from the Lie algebra to the Lie group, the solution will be identified
with

U(t) = exp
(
Ω(t)

)
U0. (3.9)

The initial value Ω(t0) has to be zero in order that the initial values of U(t)
and exp

(
Ω(t)

)
U0 coincide.

It is evident that the unknown function has changed from U(t) ∈ G to Ω(t) ∈ g.
So we face the problem of getting the function Ω(t) ∈ g that can fortunately
be obtained by the following approach using the derivative of the inverse ex-
ponential map d exp−1

Ω (see equation (3.3)).

Algorithm 3.2 (Munthe-Kaas, 1999). We consider the differential equation

U̇ = A(t)U(t)

with A(t) ∈ g and U(t) in the appropriate Lie group G. This problem can be
solved by the following steps:

• Take a suitable truncation

Ω̇ =
q∑

k=0

Bk

k! ad
k
Ω(A) = A− 1

2[Ω, A] + 1
6
[
Ω, [Ω, A]

]
+ . . .

of the differential equation Ω̇ = d exp−1
Ω

(
A(t)

)
given in equation (3.3).

• Use a Runge-Kutta scheme for the computation of the numerical solution
Ω1 ≈ Ω(t0 + h).

• Calculate the numerical solution of U̇ = A(t)U(t) as U1 = exp
(
Ω1
)
U0.

The suitable truncation can be found as follows:

Theorem 3.16 (Suitable truncation of Ω̇). If the Runge-Kutta method is of
order p and the truncation index q of

Ω̇ =
q∑

k=0

Bk

k! ad
k
Ω(A)

satisfies q ≥ p− 2, then the method of the Munthe-Kaas algorithm is of order
p.
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Runge-Kutta Methods Applied to the Equations of Motion

Our problem

U̇(t) = f
(
U(t), iP (t)

)
and Ṗ (t) = g

(
[U(t)]

)
(3.1)

with initial values U(t0) ∈ SU(N,C) and iP (t0) ∈ su(N,C) can be solved with
a partitioned Runge-Kutta method by means of the Munthe-Kaas method.

Instead of finding the solution of U(t) in the Lie group and the solution of iP (t)
in the Lie algebra, we use U(t) = exp

(
Ω(t)

)
U0 with initial value Ω(t0) = 0.

Then we replace the differential equations of (3.1) by

Ω̇(t) = f
(
Ω(t), iP (t)

)
= d exp−1

Ω (iP )

and iṖ (t) = ig
([

exp
(
Ω(t)

)
· U(t0)

])
.

(3.10)

This is advantageous because we solve both differential equations in the Lie
algebra su(N,C) and get the solution

(
U(t), P (t)

)
=
(
exp

(
Ω(t)

)
U(t0), P (t)

)

in the phase space via the mapping (3.9).

Remark 3.17 (Example of suitable truncations). It is sufficient to expand
the series of the inverse exponential map Ω̇ up to order p− 2 to derive method
order p (see theorem 3.16).The truncation of Ω̇ reads

Ω̇ = d exp−1(iP ) =
p−2∑

k=0

Bk

k! ad
k
Ω(iP ).

We yield Runge-Kutta methods of order p = 2 and p = 3 with

p = 2 : Ω̇ = f(Ω, iP ) = B0iP,

p = 3 : Ω̇ = f(Ω, iP ) = B0iP + B1[Ω, iP ].

using the Bernoulli numbers B0 = 1 and B1 = −1
2 (see definition 3.4) .

Definition 3.18 (Runge-Kutta method applied to the equations of motion).
The system of equations (3.10) with initial values (Ω(t0), P (t0)) = (Ω0, P0) may
be solved with a partitioned Runge-Kutta method. The scheme can be denoted
as

Ω1 = Ω0 + h
s∑

j=1
bjKj and iP1 = iP0 + h

s∑

j=1
b̂jLj.

The increments Kj and Lj read

Kj = f
(
Ω0 + h

s∑

k=1
aj,kKk, iP0 + h

s∑

k=1
âj,kLk

)

and Lj = ig
(
exp

(
Ω0 + h

s∑

k=1
aj,kKk

)
U0

)

for j = 1, . . . , s with coefficients bj, aj,k and b̂j, âj,k.
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Due to the fact that the initial value of Ω(t) vanishes, the notation of this
Runge-Kutta method can be simplyfied as follows:

Remark 3.19 (Simplified partitioned Runge-Kutta scheme).

Ω1 = h
s∑

j=1
bjKj and iP1 = iP0 + h

s∑

j=1
b̂jLj.

with increments

Kj = f
(
h

s∑

k=1
aj,kKk

︸ ︷︷ ︸
=:Yj

, iP0 + h
s∑

k=1
âj,kLk

︸ ︷︷ ︸
=:Zj

)
= f

(
Yj, Zj

)

and Lj = ig
(
exp

(
h

s∑

k=1
aj,kKk

)

︸ ︷︷ ︸
=:Yj

U0

)
= ig

(
exp

(
Yj
)
U0

)

and coefficients bj, aj,k and b̂j, âj,k for j, k = 1, . . . , s.

In doing so we reach the numerical solution
(
U1, P1

)
=
(
exp(Ω1) ·U0, P1

)
that

will be investigated in detail in the following section.

Remark 3.20 (Kind of the variables). Note that P0, and P1 are traceless and
hermitian matrices. The other variables Ω1, Kj, Lj, Yj, and Zj are elements
of the Lie algebra su(N,C). We solve both equations in the Lie algebra.

3.3.3 Conditions of Symmetry (= Time-Reversibility)
The Runge-Kutta method is symmetric, if the method coincides with its ad-
joint method. Unfortunately, theorem 3.15 can not be transferred to the
Runge-Kutta method on Lie groups, except for the special case of convergence
order p = 2. Even in this case, it has to be combined with a further condition
concerning the exponential function. Thus, we have to derive conditions for
the symmetry manually.
Given is the system

U1 = exp
(
Ω1
)
U0 , Ω1 = h

s∑

j=1
bjKj , iP1 = iP0 + h

s∑

j=1
b̂jLj

with Kj = f(Yj, Zj) , Lj = ig
([

exp(Yj)U0
])
,

Yj = h
s∑

k=1
aj,kKk , Zj = iP0 + h

s∑

k=1
âj,kLk.

(3.11)

Special Case: Convergence Order p = 2

For the special case of convergence order 2, the function f(Yj, Zj) just depends
on its second element. As explained in the following paragraph in more detail,
the adjoint of the system will be attained as follows:
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3.3. Partitioned Runge-Kutta Methods for Lie Groups

• Exchange U0 ↔ U1, P0 ↔ P1, h ↔ −h and Ω1 ↔ −Ω1. Thereby, the
indices of the increments Kj, Lj, Yj and Zj are changed to s + 1− j.

• Rearrange the formulas due to the shape of the original method.

• Substitute the indices s + 1− j, s + 1− k through j, k.

Hence, the adjoint of the method is denoted with

U1 = exp
(
Ω1
)
U0 , Ω1 = h

s∑

j=1
bs+1−jKj , iP1 = iP0 + h

s∑

j=1
b̂s+1−jLj

with Kj = f(Zj) depending on Zj = iP0 + h
s∑

k=1
(b̂s+1−k − âj,k)Lk

and Lj = ig
([

exp(Yj) exp(Ω1)U0
])

depending on Yj = −h
s∑

k=1
as+1−j,s+1−kKk.

Thus, we get the symmetry conditions

Ω1 : b∗j = bs+1−j ,

P1 : b̂∗j = b̂s+1−j ,

Kj : â∗j,k = b̂s+1−k − âs+1−j,s+1−k ,

Lj : a∗j,k = bs+1−k − as+1−j,s+1−k , if Yj and Ω1 commutate.

(3.12)

for j = 1, . . . , s. The symmetry conditions coincide with the conditions given
in theorem 3.15. Since exponential functions of matrices can just be subsumed
if the matrices commmutate, this would imply an additional condition for
the symmetry concerning the increments Lj. For example, the colums of the
coefficients aj,k denoted in a Butcher tableau can be multiples of the coefficients
bk. For this special case, there are coefficients, given in paragraph 3.4.1.

General Convergence Order

We run into problems concerning the symmetry of the increments Lj for j =
1, . . . , s. These problems are

• Kj = f(Yj, Zj) and Lj = ig
(
exp(Yj)U0

)
both depend on Yj. Thus the

symmetry conditions for the coefficients aj,k have to coincide for both
increments Kj and Lj for j, k = 1, . . . , s.

• As we have seen, a second exponential function exp(Ω1) occurs inside
the adjoint of Lj. Since exponential functions of matrices can just be
subsumed if the matrices commmutate, this would imply an additional
condition for the symmetry, which should preferably be avoided.

Due to these problems, the function g will be modified:
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• First of all, we exchange the coefficients aj,k with new coefficients cj,k,
j, k = 1, . . . , s. We get

Lj = ig
([

exp(Wj)U0
])

with Wj = h
s∑

k=1
cj,kKk.

Thus Kj and Lj do not depend on the same coefficients and we get 2
seperate symmetry conditions.

• The problem concerning the exponential function will be resolved as
follows: We introduce a function exp(1

2Ω1) inside g, such that

Lj = ig
([

exp(Wj) exp(12Ω1)U0
])

holds. Due to the shape of U1 = exp(Ω1)U0, both exponential functions
occur as well in the adjoint of Lj and therefore do not have to be resumed.

Because of the aforementioned changes, the whole system of the Runge-Kutta
method changes to a symmetric one:
Lemma 3.21 (Symmetric Runge-Kutta method with a general convergence
order). The symmetric Runge-Kutta method for a general convergence order
reads

U1 = exp
(
Ω1
)
U0 , Ω1 = h

s∑

j=1
bjKj , iP1 = iP0 + h

s∑

j=1
b̂jLj ,

Kj = f(Yj, Zj) , Lj = ig
([

exp(Wj) exp(12Ω1)U0
])

Yj = h
s∑

k=1
aj,kKk , Wj = h

s∑

k=1
cj,kKk , Zj = iP0 + h

s∑

k=1
âj,kLk.

(3.13)

Remark 3.22. The adjoined method has the same shape as the system given
in (3.13) with new coefficients denoted with a star. It looks like

U1 = exp
(
Ω1
)
U0 , Ω1 = h

s∑

j=1
b∗jKj , iP1 = iP0 + h

s∑

j=1
b̂∗jLj ,

Kj = f(Yj , Zj) , Lj = ig
([

exp(Wj) exp(12Ω1)U0
])
,

Yj = h
s∑

k=1
a∗j,kKk , Wj = h

s∑

k=1
c∗j,kKk , Zj = iP0 + h

s∑

k=1
â∗j,kLk.

(3.14)

Lemma 3.23 (Conditions for a symmetric Runge-Kutta method with a gen-
eral convergence order). The method described in lemma 3.21 is symmetric if
the conditions

Ω1 : b∗j = bs+1−j (3.15)
P1 : b̂∗j = b̂s+1−j (3.16)
Yj : a∗j,k = −as+1−j,s+1−k (3.17)
Zj : â∗j,k = b̂s+1−k − âs+1−j,s+1−k (3.18)
Wj : c∗j,k = −cs+1−j,s+1−k (3.19)

hold for j, k = 1, . . . , s.
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3.3. Partitioned Runge-Kutta Methods for Lie Groups

They are obtained by exchanging

U0 ↔ U1, P0 ↔ P1, h↔ −h and Ω1 ↔ −Ω1.

Since we reversed the time-step, we also have to replace the increments Kj and
Lj by Ks+1−j and Ls+1−j for j = 1, . . . , s. So we yield the new system

U0 = exp
(
−Ω1

)
U1 , −Ω1 = −h

s∑

j=1
bjKs+1−j , iP0 = iP1 − h

s∑

j=1
b̂jLs+1−j ,

Ks+1−j = f(Ys+1−j, Zs+1−j) , Ls+1−j = ig
([

exp(Ws+1−j) exp(−1
2Ω1)U1

])
,

Ys+1−j = −h
s∑

k=1
aj,kKs+1−k , Ws+1−j = −h

s∑

k=1
cj,kKs+1−k ,

Zs+1−j = iP1 − h
s∑

k=1
âj,kLs+1−k

as intermediate step. We can transform the equations of the first line and
insert them into Lj and Zj. If we substitute the indices j and k by s + 1− j
and s + 1− k, we will obtain the adjoint method of the system (3.13):

U1 = exp
(
Ω1
)
U0 , Ω1 = h

s∑

j=1
bs+1−jKj , iP1 = iP0 + h

s∑

j=1
b̂s+1−jLj ,

Kj = f(Yj, Zj) , Lj = ig
([

exp(Wj) exp(12Ω1)U0
])

Yj = −h
s∑

k=1
as+1−j,s+1−kKk , Wj = −h

s∑

k=1
cs+1−j,s+1−kKk ,

Zj = iP0 + h
s∑

k=1
(b̂s+1−k − âs+1−j,s+1−k)Lk.

A comparison of these coefficients and the ones of the adjoined method (see
(3.14)) leads to the symmetry conditions described in lemma (3.23) Note that
the conditions (3.17) and (3.19) differ from the symmetry condition for general
partitioned Runge-Kutta methods given in theorem 3.15.

The question of the existence of a partitioned Runge-Kutta method for Lie
groups that is simultaneously symmetric and has a convergence order larger
than 2 arises. We will see that it is possible to create a partitioned Runge-
Kutta method of convergence order three and combine it with the symmetry
conditions above. Using this scheme, we can solve the equations of motion
(3.1)

U̇(t) = iP (t)U(t) and iṖ (t) = ig
([
U(t)

])
.

Remark 3.24 (Even convergence orders for symmetric methods). The prop-
erty symmetry implies an even convergence order, provided that the model error
is small enough.
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3.3.4 Derivation of the Order Conditions
The order conditions for the partitioned Runge-Kutta method of order p are
derived via Taylor expansions of the exact solution (U(t), P (t)) and the numer-
ical solution (U1(t), P1(t)) up to order p in the neighbourhood of t0 = 0. The
comparison of the coefficients leads to the needed order conditions. To get or-
der conditions of order p, the coefficients of both solutions have to coincide up
to order p. Since the original function U(t) has been replaced by exp(Ω(t)U0),
it is sufficient to compare the coefficients of the Taylor expansions of the new
unknown functions Ω(t) and Ω1(t) instead of U(t) and U1(t).

Preparation of the Taylor Expansions

Remark 3.25 (Taylor expansions of exact and numerical solution). The Tay-
lor expansions of Ω(t), P (t), Ω1(t) and P1(t) read

Ω(t0 + h) =
∞∑

k=0

hk

k! Ω
(k)(t0), P (t0 + h) =

∞∑

k=0

hk

k!P
(k)(t0), (3.20)

Ω1(t0 + h) =
∞∑

k=0

hk

k! Ω
(k)
1 (t0), P1(t0 + h) =

∞∑

k=0

hk

k!P
(k)
1 (t0). (3.21)

We develop the Taylor expansions around t0 = 0. Thus using the Leibniz rule,
the m-th derivatives of Ω1 and P1 evaluated at the point 0 read

Ω(m)
1 (0) = m

s∑

j=1
bjΩ(m)(0)

and P
(m)
1 (0) = m

s∑

j=1
b̂jP

(m)(0).
(3.22)

These derivatives depend on the unknown function Ω(t) that is the solution of
the differential equation Ω̇(t) = dexp−1

Ω(t). Due to the fact that the truncation of
Ω̇(t) has to be adopted to the desired convergence order (see remark 3.17), the
computation of the Taylor series is not performed for a general case here. The
calculation takes place in the subsequent paragraphs concerning the examples
of convergence orders 2 and 3.

3.4 Munthe-Kaas Method for Convergence Or-
der 2 and 3

We show that it is possible to create a symmetric partitioned Runge-Kutta
method with convergence order p = 2 and p = 3 to solve the equations of
motion (3.1)

U̇(t) = iP (t)U(t) and iṖ (t) = ig
([
U(t)

])

with initial values
(
U0, iP0

)
.
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The Munthe-Kaas method

The solution of the equation of motion concerning the links U(t) is situated
in the Lie group SU(N,C). As mentioned in the last paragraph, it can not be
directly obtained via a Runge-Kutta method. This means, we have to rewrite
the function U(t) as

U(t) = exp
(
Ω(t)

)
U0

such that the unknown function changes to Ω(t). Ω(t) is the solution of the
differential equation

Ω̇(t) = f
(
Ω(t), iP (t)

)
= d exp−1

Ω (iP (t)) (see (3.3))

situated in the Lie algebra su(N,C). Hence, the solution Ω(t) of Ω̇(t) can be
attained via a Runge-Kutta method in the Lie algebra su(N,C).
In this manner, the differential equations (3.1) being situated both in a Lie
group and in a Lie algebra are replaced with the two differential equations in
a Lie algebra. So we can solve

Ω̇(t) = f
(
Ω(t), iP (t)

)
= d exp−1

Ω (iP )

and iṖ (t) = ig
([

exp
(
Ω(t)

)
· U(t0)

])
.

(see (3.10))

with the algorithm of Munthe-Kaas (see algorithm 3.2). Thereby, the initial
values of (3.10) read

(
Ω0, iP0

)
= (0, iP0). The function Ω̇(t) has to be suitably

truncated, according to the desired convergence order p of the Runge-Kutta
method (as described in remark 3.17):

Ω̇(t) = f
(
Ω(t), iP (t)

)
= d exp−1

Ω(t)(iP ) =
p−2∑

k=0

Bk

k! ad
k
Ω(iP ).

Our aim is to attain methods of convergence order 2 and 3. Thus, we can use
the suitable truncation of d exp−1

Ω (iP ), i. e.

Ω̇(t) = f(Ω(t), iP (t)) = iP (t) (3.23)

Ω̇(t) = f(Ω(t), iP (t)) = iP (t)− 1
2[Ω(t), iP (t)], (3.24)

as mentioned in remark 3.17. Note that hese truncations imply model errors
of order p + 1, i. e. the model error of (3.23) is of order 3 and and that of
(3.24) of order 4.

3.4.1 Symmetric Partitioned Runge-Kutta Method of
Convergence Order 2

The symmetric partitioned Runge-Kutta method of convergence order p = 2
is a special case because it can be seen as reformulated Leapfrog method. We
start with the differential equations

Ω̇(t) = f
(
Ω(t), iP (t)

)
= d exp−1

Ω (iP )

and iṖ (t) = ig
([

exp
(
Ω(t)

)
· U(t0)

])
.

(see (3.10))
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Using the truncation

Ω̇(t) = f(Ω(t), iP (t)) = iP (t)

given in equation (3.23), we get the differential equations

Ω̇(t) = f
(
Ω(t), iP (t)

)
= iP (t)

and iṖ (t) = ig
([

exp
(
Ω(t)

)
· U(t0)

])
.

(3.25)

The solution
(
Ω1, P1

)
of these differential equations

(
Ω1, P1

)
can be calculated

with the Runge-Kutta method of s = 2 stages as follows (see remark 3.19):
Since the function f

(
Ω(t), iP (t)

)
= iP (t) only depends on its second variable,

the symmetric Runge-Kutta method reads

Lemma 3.26 (Partitioned Runge-Kutta Method of Convergence Order 2).

Compute

Ω1 = h
s=2∑

j=1
bjKj and iP1 = iP0 + h

s=2∑

j=1
b̂jLj (3.26)

with increments

Kj = f
(
Yj, Zj

)
= Zj and Lj = ig

(
exp(Yj)U0

)

depending on the functions

Yj = h
s=2∑

k=1
aj,kKk and Zj = iP0 + h

s=2∑

k=1
âj,kLk

for the stages j = 1, 2. The variables aj,k, bj, âj,k and b̂j with j, k = 1, 2 denote
the coefficients of the method.

We reach the numerical solution (U1, P1) of the original problem (3.1) via(
U1, P1

)
=
(
exp(Ω1) · U0, P1

)
.

Order conditions

As described in the last section, we have to compare the Taylor series of the
exact and numerical solution of (3.25) to determine the convergence order. We
know from remark 3.25 that these Taylor expansions read

Ω(t0 + h) =
s=2∑

k=0

hk

k! Ω
(k)(t0), P (t0 + h) =

s=2∑

k=0

hk

k!P
(k)(t0),

Ω1(t0 + h) =
s=2∑

k=0

hk

k! Ω
(k)
1 (t0), P1(t0 + h) =

s=2∑

k=0

hk

k!P
(k)
1 (t0).

Thus we have to compute the derivatives of Ω(t) and P (t) around t0 = 0 up
to second order. While Ω̇(0) is chosen as iP (0) = iP0, it is evident that

Ṗ (0) = g(U0) and Ω̈(0) = iṖ (0) = ig([U0])
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holds. The second derivative of the function P reads

P̈ (0) = ġ
([

exp
(
Ω(0)

)
U0
])

= ∂g

∂U
([U0]) · exp

(
Ω(0)

)
Ω̇(0)U0 = ∂g

∂U
(U0) · iP0U0.

Furthermore, the derivatives of the numerical solution Ω1, P1 have to be com-
puted up to second order using the equations (3.22). Hence, the derivatives at
t0 = 0 read

Ω̇1(0) =
s=2∑

j=1
bjZj(0) ,

Ω̈1(0) =
s=2∑

j=1
bj
(
2Żj(0)

)
,

Ṗ1(0) =
s=2∑

j=1
b̂jg
([

exp
(
Yj(0)

)
U0
])
,

and P̈1(0) = 2
s=2∑

j=1
b̂j
∂g

∂U

([
exp

(
Yj(0)

)
U0
])

exp
(
Yj(0)

)
Ẏj(0)U0.

Hence, we have to compute

Yj(0) = 0 ,
Zj(0) = iP0 ,

Ẏj(0) =
s=2∑

k=1
aj,kZk(0) =

(s=2∑

k=1
aj,k

)
iP0 ,

and Żj(0) =
s=2∑

k=1
âj,kg

([
exp

(
Yk(0)

)
U0
])

=
(s=2∑

k=1
âj,k

)
g([U0]).

Afterwards, we insert these values in the derivatives of the numerical solution
and get

Ω̇1(0) =
(s=2∑

j=1
bj
)
iP0 ,

Ω̈1(0) =
(s=2∑

j=1
bj
(
2
s=2∑

k=1
âj,k

))
g([U0]) ,

Ṗ1(0) =
(s=2∑

j=1
b̂j
)
g([U0]) ,

and P̈1(0) = 2
(s=2∑

j=1
b̂j
(s=2∑

k=1
aj,k

)) ∂g

∂U
([U0])iP0U0.

At this point we have collected the necessary information to set up the order
conditions for the Runge-Kutta scheme (3.26) with truncated function Ω̇(t) =
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iP (t). We get the conditions

Ω̇1(0) = Ω̇(0) :
s=2∑

j=1
bj = 1 for the links U (3.27)

Ṗ1(0) = Ṗ (0) : and
s=2∑

j=1
b̂j = 1 for the momenta P (3.28)

to attain convergence order one. Convergence order two will be obtained by

Ω̈1(0) = Ω̈(0) :
s=2∑

j=1

(
bj

s=2∑

k=1
âj,k

)
= 1

2 for the links U (3.29)

Ṗ1(0) = Ṗ (0) : and
s=2∑

j=1

(
b̂j

s=2∑

k=1
aj,k

)
= 1

2 for the momenta P. (3.30)

Remark 3.27. The model error due to the truncation Ω̇ = iP is of order
3. Since the used partitioned Runge-Kutta method is symmetric, the order
conditions (3.29) and (3.30) are already fulfilled through the conditions for the
symmetry and convergence order 1 (see remark 3.24)

Coefficients

Due to the fact that the symmetric partitioned Runge-Kutta method with
convergence order two can be seen as reformulated Leapfrog method, we take
the coefficients of the Leapfrog method. They are denoted as Butcher tableaus
and given in table 3.1. It is shown in the appendix B.1, that they fulfill the
order conditions (3.27)-(3.30) for convergence order two as well as the symme-
try conditions given in equation (3.12).

This means we have indeed a symmetric Runge-Kutta method of convergence
order two. As we will see in the next chapter, the simulation of a gauge field
with this method and these coefficients works well.

links U:
0 0 0
1 1

2
1
2

1
2

1
2

momenta P:

1
2

1
2 0

1
2

1
2 0
1
2

1
2

Table 3.1: Butcher tableaus of the coefficients of the Störmer-Verlet
(=Leapfrog) method as partitioned Runge-Kutta method

3.4.2 Symmetric Partitioned Runge-Kutta Method of
Convergence Order 3

Finally, our aim is to investigate symmetric Runge-Kutta methods of conver-
gence order larger than two for the problem of solving

U̇(t) = iP (t)U(t) and iṖ (t) = ig([U(t)]) (3.1)
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with initial values
(
U0, P0

)
. As in section 3.4.1, we rewrite our differential

equations (3.1) as

Ω̇(t) = f
(
Ω(t), iP (t)

)
= d exp−1

Ω (iP )

and iṖ (t) = ig
([

exp
(
Ω(t)

)
· U(t0)

])
.

(see (3.10))

Using U(t) = exp
(
Ω(t)

)
· U(t0) and the truncation

Ω̇(t) = f(Ω(t), iP (t)) = iP (t)− 1
2[Ω(t), iP (t)]

given in equation (3.24), we get the differential equations

Ω̇(t) = f
(
Ω(t), iP (t)

)
= iP (t)− 1

2[Ω(t), iP (t)]

and iṖ (t) = ig
([

exp
(
Ω(t)

)
· U(t0)

])
.

Due to the symmetry of the Runge-Kutta scheme, we have to use the more
complicated Runge-Kutta method prescribed in lemma 3.21:
Lemma 3.28 (Partitioned Runge-Kutta Method for Convergence Order 3).

Compute

Ω1 = h
s=3∑

j=1
bjKj and iP1 = iP0 + h

s=3∑

j=1
b̂jLj (3.31)

with increments

Kj = f
(
Yj, Zj

)
= Zj −

1
2[Yj, Zj]

and Lj = ig
([

exp
(
Wj

)
exp

(1
2Ω1

)
U0
])

depending on the functions

Yj = h
s=3∑

k=1
aj,kKk , Zj = iP0 + h

s=3∑

k=1
âj,kLk and Wj = h

s=3∑

k=1
cj,kKk

for the stages j = 1, . . . , s and coefficients bj, aj,k, cj,k, b̂j, âj,k used above.
At the end we attain the numerical solution of our problem (3.1) as

(
U1, P1

)
=
(
exp(Ω1)U0, P1

)
.

Order conditions

Again, we have to compare the Taylor series of the exact and numerical solution
of the differential equations (3.31) to determine the convergence order. Thus,
we compute the Taylor expansions of these solutions:

Ω(t0 + h) =
s=3∑

k=0

hk

k! Ω
(k)(t0), P (t0 + h) =

s=3∑

k=0

hk

k!P
(k)(t0),

Ω1(t0 + h) =
s=3∑

k=0

hk

k! Ω
(k)
1 (t0), P1(t0 + h) =

s=3∑

k=0

hk

k!P
(k)
1 (t0).
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These Taylor expansions are performed around t0 = 0. Since the detailed
computation is very long and similar to the calculation in subsection 3.4.2,
the derivation of the Taylor expansions are left out. Just the results are given
here. The Taylor expansions of the exact solution read

Ω̇(0) = iP0 ,

Ω̈(0) = ig([U0]) ,
...
Ω(0) = i

∂g

∂U

(
[U0]

)
· iP0U0 −

1
2
[
ig
(
[U0]

)
, iP0

]
−
[
iP0, ig

(
[U0]

)]
,

Ṗ (0) = g([U0]) ,

P̈ (0) = ∂g

∂U

(
[U0]

)
· iP0U0 ig([U0]) ,

...
P (0) = ∂2g

∂U2

(
[U0]

)
·
(
iP0U0

)2
+ ∂g

∂U

(
[U0]

)
·
(
(iP0)2 + ig

(
[U0]

))
U0 .

(3.32)

In comparison, the Taylor expansions of the numerical solution are computed
with s = 3 stages as

Ω̇1(0) =
( s∑

j=1
bj

)
· iP0 ,

Ω̈1(0) = 2
( s∑

j=1
bj

s∑

k=1
âj,k

)
· ig

(
[U0]

)
,

...
Ω1(0) = 3

s∑

j=1
bj

(
2

s∑

k=1
âj,k

( s∑

l=1
ck,l +

1
2

s∑

m=1
bm

)
· i ∂g
∂U

(
[U0]

)
· iP0 · U0

−
( s∑

k=1
aj,k

s∑

l=1
âk,l

)[
ig
(
[U0]

)
, iP0

]

−
( s∑

k=1
aj,k

)
·
( s∑

l=1
âj,l

)
·
[
iP0, ig

(
[U0]

)])
,

Ṗ1(0) =
( s∑

j=1
b̂j

)
· g
(
[U0]

)
,

P̈1(0) = 2
s∑

j=1
b̂j

( s∑

k=1
cj,k + 1

2

s∑

l=1
bl

)
· ∂g
∂U

(
[U0]

)
· iP0 · U0 ,

...
P 1(0) = 3

s∑

j=1
b̂j

( s∑

k=1
cj,k + 1

2

s∑

l=1
bl

)2
· ∂

2g

∂U2

(
[U0]

) (
iP0U0

)2

+ 3
s∑

j=1
b̂j

( s∑

k=1
cj,k + 1

2

s∑

l=1
bl

)2
· ∂g
∂U

(
[U0]

) (
iP0

)2
U0

+ 3
s∑

j=1
b̂j

(
2

s∑

k=1
cj,k

s∑

l=1
âk,l +

s∑

k=1
bk

s∑

l=1
âk,l

)
· ∂g
∂U

(
[U0]

)
ig
(
[U0]

)
U0 .

At this point the necessary information is given to compute the order con-
ditions. We get the conditions for convergence order m by a comparison of
the m-th derivative of the exact solution Ω(t), iP (t) with the numerical one
Ω1(t), iP1(t):
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Conditions for convergence order 1

Ω̇1(0) = Ω̇(0) :
s=3∑

j=1
bj = 1

Ṗ1(0) = Ṗ (0)
s=3∑

j=1
b̂j = 1.

Conditions for convergence order 2

Ω̈1(0) = Ω̈(0) :
s∑

j=1
bj

s∑

k=1
âj,k = 1

2

P̈1(0) = P̈ (0) :
s∑

j=1
b̂j
( s∑

k=1
cj,k + 1

2

s∑

l=1
bl
)

= 1
2

Conditions for convergence order 3

...
Ω1(0) =

...
Ω(0) :

s∑

j=1
bj

s∑

k=1
âj,k

( s∑

l=1
ck,l +

1
2

s∑

m=1
bm
)

= 1
6

s∑

j=1
bj

s∑

k=1
aj,k

s∑

l=1
âk,l = 1

6
s∑

j=1
bj
( s∑

k=1
aj,k

)( s∑

l=1
âj,l
)

= 1
3

...
P 1(0) =

...
P (0) :

s∑

j=1
b̂j
( s∑

k=1
cj,k + 1

2

s∑

l=1
bl
)2

= 1
3

s∑

j=1
b̂j
(
2

s∑

k=1
cj,k

s∑

l=1
âk,l +

s∑

m=1
bm

s∑

n=1
âm,n

)
= 1

3 .

Remark 3.29. The method is symmetric and has convergence order 3. This
implies a convergence order 4, provided that the model error is small enough
(see remark 3.24).

The truncation Ω̇(t) = iP (t) − 1
2 [Ω(t), iP (t)] implies a model error of order

4. For a convergence order of 4, the model error has to be 5 such that the
additional term

1
6
[
Ω(t), [Ω(t), iP (t)]

]
=: Ẋ(t) (3.33)

has to be used.

Remark 3.30 (Vanishing additional term of the model evaluated at t0 = 0).
The term Ẋ(t) := 1

6

[
Ω(t), [Ω(t), iP (t)]

]
and its derivations Ẍ(t) and

...
X(t)

evaluated at t0 = 0 lead to

Ẋ(0) = 0 , Ẍ(0) = 0 , and
...
X(0) = 0 .

.
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Proof. Compute the derivatives of the term (3.33) up to third order and eval-
uate them at t0 = 0. We get

Ẍ(t) = 1
6

[
Ω̇(t), [Ω(t), iP (t)]

]
+ 1

6

[
Ω(t), [Ω̇(t), iP (t)] + [Ω(t), iṖ (t)]

]

...
X(t) = 1

6

[
Ω̈(t), [Ω(t), iP (t)]

]
+ 1

6

[
Ω̇(t), [Ω̇(t), iP (t)] + [Ω(t), iṖ (t)]

]

+ 1
6

[
Ω̇(t), [Ω̇(t), iP (t)] + [Ω(t), iṖ (t)]

]

+ 1
6

[
Ω(t), [Ω̈(t), iP (t)] + [Ω̇(t), iṖ (t)] + [Ω̇(t), iṖ (t)] + [Ω(t), iP̈ (t)]

]
.

Since the initial value Ω(0) equals zero, an evaluation at t0 = 0 leads to

Ẋ(0) = 1
6
[
0, [Ω(t), iP (t)]

]
= 0

Ẍ(0) = 1
6

[
Ω̇(t), [0, iP (t)]

]
+ 1

6

[
0, [Ω̇(t), iP (t)] + [Ω(t), iṖ (t)]

]

= 1
6

[
Ω̇(t), 0

]
+ 0

]
= 0

...
X(0) = 1

6

[
Ω̈(t), [0, iP (t)]

]
+ 1

6

[
Ω̇(t), [Ω̇(t), iP (t)] + [0, iṖ (t)]

]

+ 1
6

[
Ω̇(t), [Ω̇(t), iP (t)] + [0, iṖ (t)]

]

+ 1
6

[
0, [Ω̈(t), iP (t)] + [Ω̇(t), iṖ (t)] + [Ω̇(t), iṖ (t)] + [Ω(t), iP̈ (t)]

]

= 1
6

[
Ω̈(t), 0

]
+ 1

6

[
Ω̇(t), [Ω̇(t), iP (t)] + 0

]
+ 1

6

[
Ω̇(t), [Ω̇(t), iP (t)] + 0

]
+ 1

6 · 0.

With Ω̇(0) = iP (0) = iP0 it follows

...
X(t) = 1

6

[
Ω̇(t), [iP0, iP0] + 0

]
+ 1

6

[
Ω̇(t), [iP0, iP0] + 0

]

= 1
6

[
Ω̇(t), 0 + 0

]
+ 1

6

[
Ω̇(t), 0 + 0

]
= 0.

Due to the fact that the term (3.33) has no influence on the Taylor expansions
around t0 = 0, the total convergence order of the symmetric implicit parti-
tioned Runge-Kutta method given in lemma (3.28) is 4. Hence, this method
is mentioned as symmetric implicit partitioned Runge-Kutta method of con-
vergence order 4 in the following paragraphs.
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Coefficients for a partitioned Runge-Kutta method of order 4

The coefficients used for the symmetric partitioned Runge-Kutta method of
convergence order 4, are chosen according to calculations performed with the
computer algebra system Mathematica. For these computations, the afore-
mentioned conditions on the convergence order and the symmetry conditions
(3.15)-(3.19) are used.

links U:
aj,k:

bj:

0 0 0 0
0 −

√
3

6 0
√

3
6

0 0 0 0

0 1 0

cj,k:

bj:

−
√

3
6 −

√
3

6 0 0
0 0 0 0
√

3
6 0 0

√
3

6

0 1 0

momenta P:
âj,k:

b̂j:

3+
√

3
6

3+
√

3
6 0 0

1
2

3+
√

3
12 0 3−

√
3

12
3−

√
3

6
1
2 0 −

√
3

6

1
2 0 1

2

Table 3.2: Butcher tableaus of the coefficients of the partitioned Runge-Kutta
method of convergence order 3
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Chapter 4

Simulation

4.1 Model: An SU(2,C) Lattice Gauge Field
In this section we describe the simulation of an SU(2,C) gauge field situated
on a lattice executed with a Hybrid Monte Carlo method. Concerning the
replicability of the simulation, the required facts of the previous chapters are
gleaned. We start with a reminder of the Hybrid Monte Carlo algorithm
described in paragraph 2.2. It works as follows:

1. Select an initial configuration [U i] of links randomly.

2. Create conjugated momenta [P i] randomly according to the equation

PG([P ]) ∼ exp
(
−1

2
∑

x,µ

tr(P 2
x,µ)

)
= exp

(
−Ekin

(
[P ]
))
. (2.11)

3. Molecular Dynamics step: Reach the new configuration [U j, P j] using
the symmetric partitioned Runge-Kutta method.

4. Monte Carlo step:
Compute the difference of the Hamiltonians as ∆H := Hj − Hi. Then
accept the new configuration with acceptance probability

PA
(
[U i, P i] → [U j, P j]

)
= min

(
1, pj
pi

)
(2.9)= min

(
1, exp(−∆H)

)
.

5. Start at step 2.

Molecular Dynamics and Monte Carlo step

For the simulation of the lattice gauge field, we need the Hamiltonian and
its equations of motion. These formulas are given in paragraph 1.2 and 1.3.
The Hamiltonian is composed of the kinetic energy and the Wilson action (see
equations (1.6) and (1.3)) as

H
(
[U, P ]

)
= Ekin

(
[P ]
)

+ SG
(
[U ]

)
(1.5)
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with Ekin

(
[P ]
)

= 1
2
∑

x

∑

µ=0,1
tr
(
P 2
x,µ

)

and SG
(
[U ]

)
=
∑

x

β
(
1− 1

N
Re
(
tr(U01(x))

))

The Hamiltonian equations of motion for an an SU(2,C) gauge field

∂H
(
[U, P ]

)

∂Px,µ
= U̇x,µ = iPx,µUx,µ (1.7)

and
∂H

(
[U, P ]

)

∂Ux,µ

= −Ṗx,µ = −i β
N

{
Ux,µVx,µ

}

TA
(1.8)

are used in the Molecular Dynamics step. They will be solved with the parti-
tioned Runge-Kutta scheme described in section 3.3.

Representation of the links and its conjugated momenta

We have a gauge field composed of link variables Ux,µ situated in the special
unitary Lie group SU(N,C) mentioned in section 1.1. Furthermore, we have an
additional field with fictous conjugated momenta Px,µ used for the computation
of the Hamiltonian H

(
[U, P ]

)
. These momenta are traceless and hermitian

matrices, such that iPx,µ is an element of the Lie algebra su(N,C).

Notation 4.1. For convenience of notation, we leave away the indices x and
µ of the links Ux,µ and momenta Px,µ as of now. Hence, the notations

U := Ux,µ and P := Px,µ

mean one special but arbitrary pair of matrices.

Due to the fact that we simulate a gauge field of SU(2,C) matrices, the variable
N used in the equations (1.3) and (1.8) is set to N = 2. Thus, we deal with
2× 2-matrices in the whole simulation.

Definition 4.2 (Pauli matrices). The Pauli matrices are a set of 2×2 complex
Hermitian and unitary matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Remark 4.3 (Pauli matrices). Note that the complex conjugate and transposed
matrices of the Pauli matrices are the Pauli matrices itself such that it holds

σ†1 = σ1, σ†2 = σ2, σ†3 = σ3. (4.1)

The product of 2 Pauli matrices can be described through the Levi-Cita-symbol
εjkl and the Kronecker delta δjk as

σjσk = δjk + i
∑

k

εjklσl.
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Hence, we get

σjσk =





iσl if (j, k) is equal to (1, 2) or (2, 3) or (3, 1)
I2 if j is equal to k

−iσl if (j, k) is equal to (2, 1) or (3, 2) or (1, 3).

Furhermore, it holds det(σj) = −1 and tr(σj) = 0 for j = 1, 2, 3.

This means, the link variables U and the momenta P can be created as a linear
combination of these Pauli matrices and the identity I2.

Lemma 4.4. Every matrix U ∈ SU(2,C) can be represented by

U =
3∑

j=1
xjiσj + x4 · I2 =

(
x4 + ix3, x2 + ix1

−x2 + ix1, x4 − ix3

)

with complex i and a vector x ∈ R4 and ∥x∥2 = 1, such that x is an element
of the unit sphere S3.

Proof. We have to show that the complex conjugate and transposed matrix
U † will be the inverse of U . Moreover, the determinant of U has to be equal
to 1. So with

U † =
3∑

j=1
xj · (−iσ†j) + x4 · I2

(4.1)= −
3∑

j=1
xjiσj + x4 · I2

we get

U · U † =
( 3∑

j=1
xjiσj + x4 · I2

)
·
(
−

3∑

j=1
xjiσj + x4 · I2

)

=
( 3∑

j=1
xjσj

)2
+ (x4 − x4) ·

( 3∑

j=1
xjiσj

)
+ x2

4 · I2

=
3∑

j=1
x2
jσ

2
j + x1x2(σ1σ2 + σ2σ1) + x1x3(σ1σ3 + σ3σ1) + x2x3(σ2σ3 + σ3σ2) + x2

4 · I2

=
4∑

j=1
x2
j · I2 + x1x2(σ3 − σ3) + x1x3(−σ2 + σ2) + x2x3(σ1 − σ1)

= ∥x∥ · I2 = 1 · I2 = I2

and also U † · U = I2.

It holds det(U) = 1 because

det(U) = (x4 + ix3) · (x4 − ix3)− (−x2 + ix1) · (x2 + ix1)
= x2

4 − i2x2
3 + (x2

2 − i2x2
1) = x2

4 + x2
3 + x2

1 + x2
2 = ∥x∥2 = 1.
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Lemma 4.5. The conjugated momenta P of the links have to be hermitian
matrices with trace zero. They are constructed as linear combinations of the
traceless and hermitian Pauli matrices σ1, σ2 and σ3. Additionally, the mo-
menta have to be gaussian distributed according to the probability distribution
PG([P ]) given in equation (2.11). The choice of

P = 1√
2

3∑

j=1
yjσj = 1√

2

(
y3 y1 − iy2

y1 + iy2 −y3

)

with gaussian distributed random numbers yj (j = 1, 2, 3) (with mean 0 and
variance 1) fulfills these requirements.

Proof. It holds

tr(σiσj) =
{

2 if i = j
0 if i ̸= j.

and thus,

tr(P 2) = 1
2tr

(( 3∑

j=1
yjσj

)2
)

= 1
2

3∑

i,j=1
yiyjtr(σiσj) =

3∑

j=1
y2
j .

With gaussian distributed random numbers yj we get

exp
(
−1

2tr(P
2)
)

= exp
(
−1

2
∑

j

y2
j

)

such that the the configuration [P ] will be gaussian distributed as well.

4.2 Details of the Simulation
There are different integration schemes implemented using the software pack-
age Matlab. First of all, the symmetric partitioned Runge-Kutta schemes of
convergence order 2 and 4 are used. Since these new schemes are compared
with the well known Leapfrog (=Störmer-Verlet) method described in algo-
rithm 3.1, the Leapfrog method is computed as well.
The symmetric partitioned Runge-Kutta schemes are implemented using the
coefficients given in table 3.1 and 3.2. Due to the fact that these Runge-
Kutta methods are implicit, a fixed point iteration is needed to compute the
increments Kj, Lj, Yj, Zj and Wj for j = 1, . . . , s. This has to be done for the
whole field at once.

Notation 4.6 (Increments for the whole field and all stages). We have a field
of size L × T . Since we simulate a 2-dimensional lattice, we concern about
2 × L × T links U with its conjugated momenta P . These elements will be
computed through a Runge-Kutta method using the increments Kj and Lj with
j = 1, . . . , s stages. Due to the discriminability of these increments for the
different positions in the field, we denote the increments Kj and Lj used to
compute the link U at position x with Kx,j and Lx,j.
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The fixed point iteration works as follows:

• Start with the initial values K0
x,j and L0

x,j set to 0. Set the index i = 0.

• Compute

– Y i+1
j , Zi+1

j and W i+1
j for j = 1, . . . , s (from Ki

j and Li
j)

– and Ki+1
j and Li+1

j for j = 1, . . . , s depending on the above values

for all field positions x until

max
(∥Ki+1

x,j −Ki
x,j∥2

∥Ki+1
x,j ∥2

,
∥Li+1

x,j − Li
x,j∥2

∥Li+1
x,j ∥2

, j = 1 . . . , s
)

(4.2)

is smaller than a predifined value. Thereby, the index i is incremented
in each step.

In the described simulation, this predefined value is set to 10−8 without further
considerations. All increments are computed using its matrix notation. For a
temporization, they can be rewritten in terms of a base of Pauli matrices (see
definition 4.2), such that only its factors have to be used in the fixed point
iteration.

4.3 Results
We simulate a 2-dimensional lattice gauge field with periodic boundary con-
ditions using a Hybrid Monte Carlo method. During the Molecular Dynamics
step, a whole trajectory is computed. The length τ of the trajectory is fixed
and set to 1 in the whole simulation. This means that n = 1

h
integration steps

with step size h are performed to compute one trajectory. Afterwards, the en-
ergy change along a trajectory ∆H is calculated and used in the Monte Carlo
step. Since the expectation values of different variables have to be compared,
there are 5000 trajectories computed in each simulation.

4.3.1 Model of a 4x4-Lattice with β = 2.0
As a first model, a 4 × 4 lattice with gauge coupling β = 2.0 is computed
applying the aforementioned different integration schemes. It can be seen
in the following figures that the Runge-Kutta method of convergence order 2
coincides with the Leapfrog method. The Runge-Kutta method of convergence
order 4 differs from these schemes.

Convergence Order and Acceptance Rate

The main result of this thesis is the possibility to use a Runge-Kutta scheme
such that convergence orders higher than 2 can be achieved. This result can
be measured through the mean absolute value of the energy change along a
trajectory and is represented in figure 4.1. Thereby, a convergence order p of
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the numerical integration methods yields an energy change of order p after one
trajectory (see remark 3.9).
As expected, the convergence orders of the Leapfrog and the symmetric par-
titioned Runge-Kutta method of order 2 coincide. The convergence order of
the symmetric partitioned Runge-Kutta method derived with order 3 is equal
to 4. At a first glance, this result is surprising. It can be explained due to the
symmetry (see remark 3.24) and the vanishing additional term of the model
with model error of order h5 (see remark 3.30).
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Figure 4.1: The convergence order measured through the mean absolute value
of the energy change along a trajectory. It can be read off as the slopes of the
lines. The convergence errors of one trajectory are of order 2 resp. 4, and thus
of order 3 resp. 5 per integration step.

Thereby, the acceptance rate of the partitioned Runge-Kutta method of order
4 drops slower with increasing step size than the other investigated methods
(see figure 4.2).

Correctness of the Simulation

The correctness of the symmetric partitioned Runge-Kutta method is checked
through a comparison with the Leapfrog method concerning the expectation
values of exp(−∆H) and the mean plaquette value. In doing so, the errors are
computed regarding the integrated autocorrelation time.
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Figure 4.2: Acceptance rate of the simulations after 5000 trajectories.

The reference value of the mean plaquette value of the model is known as
⟨tr(U�)⟩ = 0.8669(2) (personal communication with Prof. Dr. Knechtli). It is
met in the realized simulations as visualized in figure 4.3.
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Figure 4.3: Expectation value of the mean plaquette value

The expectation value of exp(−∆H) serves as a measure for the volume-
preservation. It has to be equal to one in the region of the errors. This is
illustrated in figure 4.4. It can be seen that there may occur instabilities for
larger step sizes if methods of convergence order 2 are used. These instabilities
vanish for the Runge-Kutta method of order 4.
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Figure 4.4: Expectation value of exp
(−∆H)

Computational Time

Concerning the use of the Runge-Kutta schemes described in the subsections
3.4.1 and 3.4.2, the computational time is of deep interest. Because the Runge-
Kutta method is implicit, a fixed point iteration is needed (see paragraph 4.2).
The time consumption strongly depends on

• the shape of the increments Kj and Lj for j = 1, . . . , s,

• the used method coefficients

• and the stopping criterion of the fixed point iteration.

In figure 4.5, the mean number of fixed point iterations per integration step
is shown. It increases strongly with the step size. On the other hand, the
number n = τ/h of integration steps decreases with larger step sizes. Thus, the
computational time decreases with larger step sizes depending on the number
of fixed point iterations, except for the step size 1

2 as shown in figure 4.6.
A comparison of the computational time at a similar acceptance rate leads to
the conclusion that the implemented partitioned Runge-Kutta method of order
4 is approximately 14 times slower than the Leapfrog method. The details can
be found in table 4.1.

step size acceptance rate [%] time per trajectory [s] factor
1/6 (Leapfrog) 99.06 0.14 1
1/16 (sRK 2) 99.06 0.88 6.4
1/3 (sRK 4) 98.92 1.94 14.2

Table 4.1: Comparison of the computational time at a similar accepatance
rate of approximately 99 %.
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Figure 4.5: Mean number of fixed point iterations per integration step
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Figure 4.6: Mean time consumption per trajectory per link.

4.3.2 Volume Dependence
The volume dependence of the simulations is interesting. Thus, the simulations
of the Leapfrog and the symmetric implicit partitioned Runge-Kutta method
are executed for the different lattices of size 4× 4, 6× 6 and 8× 8 and β = 2.0
An examination of the convergence order shows that its properties are the
same for all lattice size. Just the factor of the order increases with the lattice
size for both investigated methods as visualized in figure 4.7.
Next, the expectation value of exp(−∆H) is represented in figure 4.8. It can
be seen that there may occur instabilities for larger lattices concerning the
larger step sizes in the Leapfrog method. In contrast, the higher-order method
is able to use larger step sizes.
The most interesting point concerning the volume dependence is the behaviour
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Figure 4.7: Convergence orders given through the expectation value of the
absolute value of the energy change along a trajectory.
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Figure 4.8: Expectation value of exp(−∆H).

of the computational cost per link. A comparison of the number of fixed point
iterations (see figure 4.9) shows that this number remains for larger lattices.
Thus, the time consumption does not depend on the volume of the lattice as
visualized in figure 4.10.

As a last point, the time consumption per trajectory per link of both investi-
gated methods is compared concerning a similar acceptance rate. Choosig an
acceptance rate of approximately 98.5%, we get the result, that the compu-
tational time of the Leapfrog method and the symmetric partitioned Runge-
Kutta method of order 4 do not grow with the volume. This result is visualized
in figure 4.11.
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Figure 4.9: Number of fixed point iterations per integration step.
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Figure 4.10: Mean time consumption per trajectory per link.

4.3.3 Dependence on the Gauge Coupling β

For completeness, the dependence on the gauge coupling term β is investigated.
We fix the lattice volume to a size of 4 × 4 links. Then we use the different
values 1.0, 2.0, 3.0 and 4.0 for β and examine the convergence orders and the
used computational time.
As a result, the convergence orders remain as illustrated in figure 4.12. Thereby,
the convergence errors increase due to a factor depending on an increasing β.
The number of fixed point iterations increases with β (see figure 4.13). Due to
the strong dependence of the computational time on the fixed point iterations,
the consumed time increases with β as well.
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Figure 4.11: Comparison of the computational time for a similar acceptance
rate.
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Figure 4.12: Convergence orders of different values for β. The convergence
orders are 2 and 4. The factor of the error increases with β.
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Figure 4.13: Left: The number of fixed point iterations for different values of
β. Right: The computational time increases with β.
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Conclusion and Outlook

The main result of this work is the insight that implicit partitioned Runge-
Kutta methods can be used during the simulations of gauge theories. It can
be mentioned, that symmetric implicit partitioned Runge-Kutta methods have
an even convergence order provided that the model error is small enough. Due
to the fact that a convergence order of 4 is reached in the simulations, it has
been shown that a convergence order greater than 2 can in fact be attained.
Furthermore, the investigated implicit partitioned Runge-Kutta method of
convergence order 4 is stable, which allows to use larger step sizes. So far,
the complexity of the integration scheme described in lemma 3.21 prevents
the method from being more efficient than the Leapfrog integration scheme.
Though, it needs to be said, that the main objective of this thesis has been
the investigation of the feasibility of higher-order integration schemes besides
the Leapfrog and splitting methods. Thus, there has been no attempt in opti-
mizing this method until now.

The symplecticity, i.e volume-preservation is not considered in this thesis. Al-
though the expectation value of the energy chage along a trajectory exp(−∆H)
serves as a measure for volume-preservation, it should be shown numerically
by means of the Jacobian of the field configurations.
As a next step, the time consumption of the implicit partitioned Runge-Kutta
method should be examined. The fixed point iteration depends on matrix
computations so far. It can be improved, e.g using a base of Pauli matrices.
With this ansatz, only the coefficients of the Pauli base would have to be
computed. Furthermore, the stopping criterion used in the fixed point iteration
can be considered as well as the method coefficients. Probably, the coefficients
can be chosen in a way that the expensive parts have to be evaluated less often.
Another possibility to save computational time is the change of the increment

Lj = ig
([

exp
(
Wj

)
exp

(1
2Ω1

)
U0
])
.

Because of the two matrix exponential functions, its evaluation is very costly.

Another idea is the exchange of the used mapping U(t) = exp(Ω(t)U0) given in
equation (3.9) and its appropriate differential equation Ω̇(t) = exp−1

Ω (see equa-
tion (3.3)) with another one, e.g. the Cayley map. In doing so, the exponential
function and the truncation of the derivative of the inverse exponential map
would be replaced. Since the computation of the matrix exponential function
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is time-consuming, this could be advantageous. Another point is that the Tay-
lor series used to determine the convergence orders depend on the truncation
of the model and have to be computed for each convergence order separately.
The derivative of the inverse Cayley map is not truncated, such that higher
convergence orders can be derived from lower ones.
As a general remark, it can be said that the implicit partitioned Runge-Kutta
method does not depend on the size of its used matrices. Thus, the scheme
can be applied for any differential equations with result in a Lie group.
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Appendix A

Theory

Definition A.1 (Haar measure). For any compact group G the Haar measure
is the unique measure dU on G which is

• normalized: ∫

G
f(U)dU = 1,

• invariant:
∫

G
f(U)dU =

∫

G
f(V U)dU =

∫

G
f(UV )dU ∀V ∈ G.

Definition A.2 (Lie Algebra). A Lie algebra g is a vector space over a field
F with composition

[ , ] : g× g −→ g, (x, y) 7−→ [x, y]

which is called Lie bracket or commutator and satisfies the following conditions:

L1 Antisymmetry
[x, y] = −[y, x] ∀x, y ∈ g

L2 Bilinearity

[αx + βy, z] = α[x, z] + β[y, z]
[x, αy + βz] = α[x, y] + β[x, z]

∀x, y, z ∈ g and α, β ∈ F

L3 Jacobi identity
[
x, [y, z]

]
+
[
y, [z, x]

]
+
[
z, [x, y]

]
= 0 ∀x, y, z ∈ g

Remark A.3. We will consider the general linear Lie algebra g with commu-
tator

[A,B] = AB −BA ∀A,B ∈ g.

Definition A.4 (Lie Group). A Lie group G is a group which is also a differ-
entiable manifold. The group operation is a differentiable mapping G×G→ G.
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Definition A.5 (Tangent space of a matrix Lie group). Let G be a matrix Lie
group. The tangent space at the point U of this Lie group is defined as

TUG := {AUU |AU ∈ g}.

Remark A.6 (Connection between Lie group and Lie algebra). Since the Lie
group is a differentiable manifold, it has a tangent space in every point. The
tangent space at the identity

TIG := {AII|AI ∈ g}.

has the structure of a Lie algebra.

Definition A.7 (Exponetial map). The exponential map

exp : g → G, A 7→ exp(A) =
∞∑

k=0

Ak

k! (A.1)

with A ∈ g and exp(A) ∈ G maps an element of the Lie algebra g onto an
element of the Lie group G.

Theorem A.8. The determinant of a Lie group and the trace of a Lie algebra
are connected via

det
(
exp(A)

)
= exp

(
tr
(
A
))
.

Remark A.9. For square matrices U, V,W it holds

tr
(
U + V

)
= tr

(
U
)

+ tr
(
V
)

(A.2)

tr
(
UV

)
= tr

(
V U

)
(A.3)

and for unitary matrices U

Re
(
tr
(
U
))

= 1
2tr

(
U + U †

)
(A.4)

Proof. The first two equations are obvious, and equation (A.4) follows from

tr
(
U + U †

)
= tr

((
Re(U) + Im(U) + Re(U)− Im(U)

)

= tr
(
2 · Re(U)

)
= 2 · tr

(
Re(U)

)
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Calculations

B.1 Check of the symmetry and the conver-
gence order 2

Remark B.1. The coefficiens given in table 3.1 fulfill the symmetry conditions
(3.12) and the order conditions (3.27)-(3.30) for convergence order 2.
Proof. The order conditions will be checked with the coefficients from the
Butcher tableaus denoted in table 3.1:

(3.27) :
s=2∑

j=1
bj = b1 + b2 = 1

2 + 1
2 = 1

(3.28) :
s=2∑

j=1
b̂j = b̂1 + b̂2 = 1

2 + 1
2 = 1

(3.29) :
s=2∑

j=1

(
bj

s=2∑

k=1
âjk
)

= b1 · (â11â12) + b2 · (â21â22) = 1
2 ·

1
2 + 1

2 ·
1
2 = 1

2

(3.30) :
s=2∑

j=1

(
b̂j

s=2∑

k=1
ajk

)
= b̂1 · (a11 + a12) + b̂2 · (a21 + a22) = 1

2 · 0 + 1
2 · 1 = 0 + 1

2 = 1
2

This means the partitioned Runge-Kutta method (3.26) with coefficients given
in table 3.1 fulfills convergence order two. Considering the symmetry condi-
tions

b1 = 1
2 = b2

â1,1 = b̂2 − â22 = 1
2 − 0 = 1

2
â1,2 = b̂2 − â21 = 1

2 −
1
2 = 0

â2,1 = b̂1 − â12 = 1
2 − 0 = 1

2
â2,2 = b̂1 − â11 = 1

2 −
1
2 = 0

b̂1 = 1
2 = b̂2

a1,1 = b2 − a22 = 1
2 −

1
2 = 0

a1,2 = b2 − a21 = 1
2 −

1
2 = 0

a2,1 = b1 − a12 = 1
2 − 0 = 1

2
a2,2 = b1 − a11 = 1

2 − 0 = 1
2

mentioned in the system of equations (3.12), the method is also symmetric.
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