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persönliche Unterstützung zu dem Gelingen dieser Masterthesis beigetragen
haben.

Insbesondere möchte ich mich bei Prof. Dr. Günther und Prof. Dr. Nelles
für ihren fachlichen Rat und ihre Bereitschaft, eine fächerübergreifenden Ar-
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CHAPTER I

Introduction

Weather influences anyone’s life. If it is hot, we turn off the heating and
maybe turn on the cooler. If it gets cold we wear warm clothes and turn
the heating on again. Maybe a nasty winter even motivates us to do a short
holiday on the Maldives.
As weather influences every single person it influences a lot of companies as
well. The energy supplier can sell more energy if you turn on your heating.
The electricity supplier sells more electricity if you use the cooler. The textile
industry profits if you buy a new warm sweater and the hotels in Germany
may feel the negative impact of nasty weather in Germany, whereas the Mal-
divian may feel a positive impact.
But on the other hand the positive impact of a cold winter on the energy sup-
plier can turn into negative if the demand is that high that energy prices raise
extraordinarily and the supplier cannot pass the difference to the customer
because of price fixing. This phenomenon could appear in other markets as
well.

The given examples are obviously not exhaustive. But they give an im-
pression that there is a strong but complex relationship between the perfor-
mance of a lot of companies and the weather performance. Generally every
company itself has to figure out which factors how far influence its prof-
its and gains. That holds for weather specific factors as well. It has to be
cleared if the company depends on the weather at all (which is true for a huge
amount, see e. g. [BB99]), which weather event or weather combination is
decisive, how strong the influence is and how this open weather risk exposure
can be hedged. This hedging is advantageous although the company has to
pay for passing on a part of its risk. Firstly the income side and/or the
cost side becomes more stable. Secondly as ideally the maximum loss or its

1



Introduction 2

probability gets lower, the company does not have to provide as much eq-
uity as before and can use this ”gained” equity for profitable investments etc.

There are already some weather risk hedging tools. A well known idea
is the use of weather insurance policies. They are usually individually ne-
gotiated contracts between risk seller and insurance. The insurance itself
can only sell or decrease their own bought risk by selling it again to another
insurance, mostly reinsurance. It is difficult to find another risk which is
almost negatively correlated to the risk they have already bought to hedge
their risk itself. Therefore the insurance usually demands a high premium if
it buys the risk at all. It does not buy risks which ties up too much of the
insurance’s equity.
The problems with insurances (respectively insurance like protection con-
cepts) lead to the question of more flexible and cheaper hedging tools. In the
recent years weather derivatives have become more popular.

Weather derivatives

Derivatives in general are financing tools that derive from an underlying.
They cannot exist by itself. Their value is determined by the underlying. A
stock option is an example of a stock derivative. The value of the option
depends on the price of the stock. Without the underlying stock prices the
stock option does not make sense. More details and more exotic examples
can be found in [Nel96].
Analogously a weather derivative is a financial instrument which depends on
a weather event. Usually this relationship is not direct but between deriva-
tive and an index whereas the value of this index depends on the weather.

Weather derivatives are a relatively new concept. The first contracts were
made in 1997. The total volume was estimated as 500 million US-$. The first
stock exchange for weather derivatives is the Chicago Mercantile Exchange
(CME) which established weather indices basing on the weather in 11 differ-
ent cities in the USA. The big player are energy companies. Slowly insurance
companies join. Such different types of derivatives as swaps, options, caps,
floor and collars are traded. After a strong growth in the beginning the mar-
ket for weather derivatives has been growing slowly. Hereby the pricing is
considered as one of the main problems (see [BB99]).

As the idea of weather options is quite important in the following, an exam-
ple is presented.
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Example: Important weather indices in the United States are the Heating-
Degree-Day-Indices. They measure deviations from a certain reference tem-
perature. We have a closer look on a Heating-Degree-Day-Index (HDD-
Index) at location X. It measures if the average temperature is lower than
the reference temperature of 65F. The idea behind is that in this case people
turn their heating on and their cooling off.
Often such a contract is made for the winter months December, January and
February. The HDD-index after these months (if there is no leap year) is

HDDX
Dez, Jan, Feb =

28.2∑
i=1.12.

(65− Ti)+

with Ti average daily temperature in Fahrenheit at date i at location X.
Assuming that the average temperature at this location is 41 F a put on
the HDD with strike K = 2200 protects against a warm winter. Its payoff-
function looks as follows if one assumes a payoff of 10$ per index unit

f(HDD) = 10 · (K −HDD)+ $

which leads to the following illustration of the payoff versus the index.

Figure 1.1: Payoff function of a European put

In this example it is not clear how to price the put or more general an
appropriate weather derivative. A natural idea is to adapt the pricing tools
from stock markets. Here some problems arises.

The probably most popular pricing tool in option pricing is the Black-
Scholes-formula introduced in [BS73] and [Mer73]. So a first try is to use the
Black-Scholes-concept to price weather derivatives.
The original formula inter alia needs some specific assumptions and condi-
tions (see e. g. [Wil00a] or [Hul00]):

1. underlying is tradable,
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2. option is European,

3. option is put or call,

4. there is continuous hedging,

5. underlying is lognormally distributed,

6. risk free interest rate is a constant,

7. no arbitrage opportunities,

8. no transaction costs,

9. no dividends on the underlying.

A situation in which all these conditions hold is called Black-Scholes-world.

If one considers weather derivatives one sees that they do not live in a
Black-Scholes world. Admittedly some of the assumptions can be fulfilled. It
is quite obvious that one could consider a European style option first. Natu-
rally satisfied is the requirement of no dividend payments as the underlying
is a weather event.
Furthermore there are some requirements which do not hold in stock markets
either. Therefore one could discuss if they are neglectable. That is e. g. the
continuous hedging. In practice only a time discrete hedging is possible and
desirable.

These requirements may be manageable. The first of two essential prob-
lems is that weather is not tradable. The concept of Black-Scholes is the
construction of a riskfree portfolio of the underlying stock and the appro-
priate option. Then an arbitrage-free argument is applied. In the case of
weather derivatives one cannot construct such a riskless portfolio. Thus the
conceptual idea of Black-Scholes does not work.
There is also a more general understanding of Black-Scholes formula. One
speaks of a Black-Scholes-formula if the underlying is lognormally distributed
(refer to [MSS97] for further information). For example there are Black-
Scholes-solutions for the Libor market model capletts (see [ABR01] and
[AA98]). In this case the construction of a riskless portfolio is not necessary
but one gets the price of the option as discounted conditional expectation

(1.1) V (s) = exp

 T∫
s

r(u)du)

E ((ST −K) |Fs) .
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The Feynman-Kac theorem allows to interpret this conditional expectation
as a partial differential equation which is the same as we would obtain with
a duplication strategy.
Refer to [Øks00] for the relation between expectation of stochastic differen-
tial equations and parabolic partial differential equations of second order.
This version of Black-Scholes world is not given in the case of weather deriva-
tives either.

Rain derivatives

Black-Scholes does not work but there have been various attempts to model
and price weather derivatives with main focus on temperature, see for exam-
ple [CW01] and [Sch00].
Considering rain in contrast to temperature additional problems come up.
Rain is a local weather event. That means that the fact that it rains at
location A does not have to be sign of rain at location B even if they are
close. This fact should be born in mind throughout this thesis as it could
mean that every location must be modelled individually.
The mathematical formulation is that the correlation between rain at A and
rain at B is not (close to) 1. Basing on yearly precipitation the following table
shows that this is the case with rain derivatives. Rain is not highly correlated.

Schleswig Hamburg Rostock Hannover Düsseldorf Trier DAX
Schleswig 1 0.77 0.67 0.54 0.29 0.54 -0.34
Hamburg 1 0.76 0.72 0.33 0.54 -0.32
Rostock 1 0.62 0.18 0.47 -0.12
Hannover 1 0.58 0.55 -0.05
Düsseldorf 1 0.43 0.38
Trier 1 0.08
DAX 1

Table 1.1: Correlation between different weather stations and DAX

A detailed analysis considering the locations city of London and London
Heathrow can be found in [Mor00].

Remark: The last column shows the correlation between DAX and yearly
accumulated rain at the different weather stations. For calculating the corre-
lation the changes in percent between the statuses at year-end are considered.
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The correlations are small and mostly negative. That means that there is
diversification potential which makes rain derivatives interesting for portfolio
managers.

If one wants to model rain one has to look at rain. Fortunately one
does not have to do it by himself. The German weather service (Deutscher
Wetterdienst, DWD) has been and is still observing the weather at more than
20 different weather stations in Germany for 35 years and longer depending
on the specific weather station. The source for all data presented within this
theses is the homepage of the DWD, www.dwd.de. I take special interest in
6 weather stations:

• Schleswig, data available since 1947;

• Hamburg, data available since 1891;

• Rostock, data available since 1947;

• Hannover, data available since 1936;

• Düsseldorf, data available since 1969;

• Trier, data available since 1954.

The percentage of missing data is low. Considering for example Schleswig
two records miss. If there is a missing data record it is substituted by random
number from a normal distribution around the arithmetic mean of the data
at hand.

Topic of this thesis is developing sound models for rain with regard to the
situation in Germany and then using these models to price rain derivatives.
At his point numerics come into play. Numerical integration and simulation
will prove to be necessary to determine the fair value of rain derivatives. The
used programming language is Matlab.

The thesis is organised as follows. In chapter 2 a hierarchy of models
is set up with regard to an improving mapping of reality. The models are
mathematically formulated as stochastic differential equations. Parameter
estimators are proposed to calibrate the models to specific locations.
In general the SDEs are not analytically solvable. For that reason numerical
integration schemes are presented in chapter 3.
These integrations schemes are used to integrate the SDEs in chapter 4. With
means of Monte-Carlo-simulation rain derivatives are priced. Furthermore



Introduction 7

the influence of the parameter estimators on the prices is analysed.
Two case studies are shown in chapter 5. The developed models and tech-
niques are applied to realistic examples. Insurance policies and rain options
are compared to see if rain derivatives are advantageous in praxis.



CHAPTER II

A hierarchy of models

To get a feeling for rain or more precise precipitation we have a look on some
visualisations of rain.

Figure 2.1: Rain, Schleswig, 1947-2003, 7-days-intervals

Figure 2.1 implies that precipitation is strongly fluctuating. There seems to
be no kind of regular oscillation but a stochastic noise.

8



CHAPTER 2. A HIERARCHY OF MODELS 9

Figure 2.2: Rain, Schleswig, 1980-2003, 28-days-intervals

Figure 2.3: Rain, Schleswig, 1992-2003, 28-days-intervals

Considering greater time intervals in figures 2.2 and 2.3 one observes that
the process rain fluctuates around a mean. If the process is far away from
the mean it seems more likely to move back to the mean than to stride away
further.
Thus after having seen these three pictures the first impression of rain is that
rain is

• stochastic,
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• with high volatility and

• fluctuating around a mean.

Now we have to decide how to describe this phenomenon mathematically:
We can choose between discrete and continuous modelling. Within this the-
sis the assumption of continuity is made. Obviously this assumption is a
restriction. There are reasons why this assumption can be considered as
maintainable. At first glance rain seems to start suddenly but actually it
usually starts slowly and becomes stronger continuously.
Secondly we could measure rain as precipitation in a certain interval, thus
we can make it continuous. Figure 2.4 is a visualisation of this idea.

Figure 2.4: Daily precipitation, Schleswig, July - Dec 2003

Thirdly to price rain derivatives eventually we will need numerical integra-
tion. Therefore we will have to discretise the continuous model. At this later
point we will deal with a discrete model which fits the discrete data.

Figures 2.1, 2.2 and 2.3 gives a first impression about how rain is dis-
tributed. Basing on these figures we will proceed as follows. As a starting
point we will set up a model which covers these properties of rain. A more
detailed analysis of rain will show that this model does not cover all prop-
erties of rain. Particularly two problems will arise. Therefore two further
models will be set up basing on the first - each of them mapping one more
feature of rain. So both of them stand for one step closer to reality. Lastly
these two refinements will be combined in a fourth model.
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The mathematical means to formulate the models come from stochastic
analysis. Especially the stochastic integral is important as the models are
phrased as stochastic differential equations.

The models will become usable by developing parameter estimators. Hereby
the models can be fitted to particular locations.

2.1 Model 1 - Mean reversion with constant

mean

We decided to model rain continously. We observed that rain cannot be
predicted which fits every day experience. Furthermore we saw that rain is
fluctuating around a mean which means that if rain in a particular period
is far away from the long time mean it is more likely to revert back than to
depart further.
A mathematical description of the mentioned properties respectively assump-
tions is given by (2.1)

(2.1) dXt = κ(θ −Xt)dt+ σXp
t dBt

with t ≥ 0, θ > 0, κ ≥ 0 and the initial point value X0 = x0. Bt denotes a
standardized Brownian motion. It is the usual formulation of a continuous,
stochastic mean-reverting process.
Hereby the stochastic process Xt is the unknown amount of rain at time
t. Therefore it makes sense to choose t ≥ 0 although a generalisation to
negative t is possible.
The other parameters θ, κ, σ and p are fixed. The parameter θ is called the
mean factor because the stochastic process Xt fluctuates around θ. As there
is always a nonnegative amount of rain θ is supposed to be ≥ 0. According
to the weather in German we further postulate θ > 0.
κ is the mean-reverting factor. It determines how fast the process Xt returns
to the mean. Thus it also makes sense to postulate κ ≥ 0.
The diffusion parameters σ and p describe the volatility of Xt. Having a look
on the analytical properties of mean reverting processes one can show that

P (Xt > 0 : for all t) = 1 a. s.

if p > 1
2

or if p = 1
2

and κθ > σ2

2
. A detailed discussion of analytical proper-

ties of diffusion processes can be found in [KT73] and [KT81]. The positivity
of mean reverting processes is discussed in [Kah04].
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The stochastic differential equation (2.1) describes a stochastic process
Xt. An intuitive understanding is that the change in Xt is described by two
addends. If we consider only the first addend κ(θ−Xt)dt we have an ordinary
deterministic differential equation dXt = κ · (θ − Xt)dt , Xt0 = x0 with the
solution

Xt = θ + (x0 − θ) · e−∆κ with ∆ = t− t0.

If x0 = θ then Xt = θ for all t ≥ T0. If t → ∞ the solution tends to θ
independently of the initial value. The greater κ the stronger is this effect
which fits with the interpretation of κ as factor which determines the speed
of mean-reversion.

Secondly there is the addend σXp
t dBt. That is the stochastic factor. We

can think of ∆Bti = Bti+1
−Bti as the discretisation of dBt. It is a normally

distributed random variable with mean 0 and standard deviation
√
ti+1 − ti.

An overview about Ito-calculus including a more precise interpretation of
(2.1) can be found in the appendix A. Additionally some calculation rules
are provided.

2.1.1 Parameter estimation

We have set up a model. The fitting to the given rain data happens by
parameter calibration. We want to obtain an unbiased estimator θ̂ for θ and
an unbiased estimator κ̂ for κ. Thus the estimators are supposed to fulfill

E
(
θ − θ̂

)
= E (κ− κ̂) = 0.

Ito-Integration of the SDE

dXt = κ(θ −Xt)dt+ σXp
t dBt

leads to

Xt = X0 + κ

t∫
0

(θ −Xs)ds+ σ

t∫
0

Xp
sdBs.

We consider the expectation of this equation and get

E (Xt −X0) = κE

 t∫
0

(θ −Xs)ds

+ σE

 t∫
0

Xp
sdBs


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which simplifies to

E (Xt −X0) = κE

 t∫
0

(θ −Xs)ds


because E

(∫ t
0
f(s,Xs)dBs

)
= 0 for any function f ∈ V in the Ito-calculus

(see [Øks00]). In the following we will use the differential equation version

(2.2) E (dXt) = κ · E ((θ −Xt)dt) .

Drift parameters

Estimating θ: A natural estimator for θ is the arithmetic mean

(2.3) θ̂ =
1

n

n∑
i=1

Xi.

Hereby Xi denotes X at ti. We want to show that (2.3) delivers an unbiased
estimator for θ. For that reason we consider the deterministic differential
equation given by (2.2)

(2.4) dy(t) = κ (θ − y(t)) dt

with some initial value y(s) = ys, s < t. Solution of this initial value problem
is

(2.5) y(t) = θ + (ys − θ) · e−κ(t−s).

This enables the following calculation with ∆ = ti+1 − ti

1

n

n∑
i=1

Xi =
1

n

n−1∑
i=0

θ + (Xi − θ) · e−κ∆

= θ +
1

n

n∑
i=1

(X0 − θ) · e−κi∆

= θ + (X0 − θ)
1

n

n∑
i=1

e−κi∆

= θ + (X0 − θ)
1

n

n∑
i=1

(
e−κ∆

)︸ ︷︷ ︸
∈(0,1)

i
.
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Thus

E

(
θ − 1

n

n∑
i=1

Xi

)
−→
n−→∞

0

and θ̂ = 1
n

∑n
i=1 Xi is an unbiased estimator for θ.

Estimating κ: We use (2.2) to show that

(2.6) κ̂ =
1

n

n∑
i=1

Xi+1 −Xi

(θ −Xi) ∆

is an unbiased estimator for κ if ∆ is sufficiently small.

Using (2.5) we can calculate as follows

κ̂ =
1

n

n∑
i=1

Xi+1 −Xi

(θ −Xi) ∆

=
1

n

n∑
i=1

θ + (Xi − θ) e−κ∆ −Xi

(θ −Xi) ∆

=
1

n

n∑
i=1

(Xi − θ) ·
(
e−κ∆ − 1

)
(θ −Xi) ∆

=
1

n

n∑
i=1

(
1− e−κ∆

)
∆

=

(
1− e−κ∆

)
∆

=
1− (1− κ∆) +O(∆2)

∆
= κ+O(∆).

Thus κ̂ is a plausible estimator for small ∆, independently of n.
Unfortunately this estimator turned out to be unsteady. That raises the

question why it is unsteady although the estimator is theoretically correct.
Problem is the term we neglected by considering the expectation of the SDE
(2.1). Actually we have the following expression for κ

κ =
dXt

(θ −Xt) dt
− σXp

t dBt

(θ −Xt) dt
.

The expectation of the second term is zero, E
(
σXp

t dBt
(θ−Xt)dt

)
= 0. But what we do

in the estimation process is that we consider a discretisation and afterwards
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take the average of the realisation (time series). If we discretise this second
term we obtain

(2.7)
σXp

n∆B

(θ −Xn) ∆
.

In the case if θ −Xn is close to zero, the expression becomes very large. So
the cases with θ−Xn very small dominate the estimator. To avoid this effect,
a modification makes sense:

κ̂b =
1

#Ib

∑
i∈Ib

Xi+1 −Xi

(θ −Xi) ∆
.

with Ib = {i = 1, ..., n : |θ −Xi| > b} and an appropriate choice for b.
Tests show that this estimator is stable, also with respect to the boundary
b. Figure 2.5 visualises this effect:

Figure 2.5: κ as a function of the boundary

In this picture the estimation of κ is plotted against the bound on the x-axis.
The estimation bases on one simulated path, using the data from Schleswig.
One observes that the estimation with a low boundary does not lead to
estimators near the real κ, but with increasing boundary the estimation
comes close to the real input κ (see also chapter 4).

Thus at this point we can estimate the parameters of the drift term in-
dependently of the diffusion parameters.
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Diffusion parameters

To estimate the diffusion parameters a small trick is applied (see [Wil00a]).
Squaring the stochastic differential equation (2.1) leads to

(dXt)
2 = κ2 · (θ −Xt)

2 · dt · dt+ κ · (θ −Xt) · σ ·Xp
t · dt · dBt + σ2 ·X2p

t dB
2
t .

Applying the calculation rules (A.5) simplifies the squared SDE. One obtains
an equation independent of the drift parameters

(2.8) (dXt)
2 = σ2X2p

t dt.

Taking the logarithm of (2.8) leads to

ln (dXt)
2 = 2 ln (σ) + ln (dt) + 2p ln (Xt) = a+ b ln (Xt)(2.9)

with a = 2 ln (σ) + ln (dt) and b = 2p. One observes that there is a linear
relation between ln (dXt)

2 and ln (Xt). Having the data points from our time
series, a and b can be estimated by finding the best fit straight line. Directly
σ and p follow from a and b.

2.2 Model 2 - Mean reversion with determin-

istic mean

In model 1 two assumptions are made: First θ is constant and second rain is a
stochastic processes fluctuating around this constant mean. Having a closer
look at rain it seems that there are seasonality effects. Figure 2.6 shows the
average monthly rain at the weather stations Hannover and Schleswig.

Figure 2.6: Monthly average rain, data series: 1954-2001



CHAPTER 2. A HIERARCHY OF MODELS 17

One observes that the averages differ. Characteristics like that are not
covered in a constant mean. Thus an improvement of model 1 is substituting
the constant mean θ by a function θ(t). That is what is done in model 2.

As an example the time unit month is considered. The rain unit is 0.1mm
per m2.
The SDE

(2.10) dXt = dθ(t) + κ(θ(t)−Xt)dt+ σXp
t dBt

with t ≥ 0, κ ≥ 0 and the initial point value X0 = x0 describes a mean-
reverting-process with a deterministic mean function θ(t). As in model 1 we
postulate θ(t) > 0. See [DQ00] for explanation of the term dθ(t).

What is a sensible choice for the function θ? As the function is supposed
to fit with the data, one has to look at the data again. Figure 2.6 implies
that the mean is more like a sine than a constant. So we choose θ(t) as a
sine:

θ(t) = m+ α sin

(
2π(t− v)

12

)
.

Hereby v is the shift on the x-axis (to scale up to months we divide by 12) α
determines the oscillation and m is the mean of the sine curve.
Plotting the sine against the real data we see that it is far better than the
constant.

Figure 2.7: Monthly average vs θ(t), Schleswig, data series: 1954-2001

θ(t) = 745 + 200 sin
(
π(t−6.25)

6

)
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But there are some characteristics which are not represented by this sine
function. The two notches are striking and not yet covered. Possible adaption
is adding a second sine term or more generally to apply a Fourier analysis
on the given data:

θ(t) = m+
n∑
i=0

αi sin

(
(2i+ 1)π (t− v)

6

)
.

Having a look on the plot of the average values from Schleswig in figure 2.8
one sees that this new θ-function is rather close to the real averages.

Figure 2.8: Monthly average vs θ(t), Schleswig, data series: 1954-2001

θ(t) = 745 + 200 sin
(
π(t−6.25)

6

)
+ 70 sin

(
3π(t−6.25)

6

)

This leads to the question how many sine-terms are necessary. The an-
swer depends on the number and on the length of the time intervals. This
topic is dealt with in chapter 4.

Parameter estimation

We want to adapt the methods used for parameter estimation in model 1.
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θ-function

We can estimate the parameters of the θ-function, m,αi, v with least-square
method. Therefore the function

f(t) = m+
n∑
i=0

αi sin

(
(2i+ 1)π (t− v)

6

)
is compared with the real averages D(t), D(t) average over all years at t.

E. g. let i = 1951, ..., 2000 be the years within the time series. Then

D(k) =
1

50

50∑
i=1

R(k, i)

holds with R(k, i) = {rain in month k in year i}, k = 1, ..., 12.
For this thesis the Gauss-Newton method has been implemented to find

the minimising parameter constellation in a least-square sense, thus to solve

min
m,αi,v

||f(·,m, α0, ..., αn, v)−D(·)||22.

The Gauss-Newton method is for example presented in [Sch97b].

Remark: This thesis deals with 6 weather stations. In every single case the
θ-function as chosen above proved to be suitable. The differences between
the stations reflect in the different estimated parameters.

Drift parameters

Estimating θ has been already done. But there is still κ to calibrate. Anal-
ogously to model 1 the expectation of (2.10)

E (dXt) = E (dθ(t)) + κ · E ((θ −Xt)dt)

is discretised and averaged. That leads to the following estimator for κ

κ̂ =
n∑
i=0

Xi+1 −Xi − θ(i+ 1) + θ(i)

(θ(i)−Xi) ∆
.

Here again the modification to

κ̂b =
1

#Ib

∑
i∈Ib

Xi+1 −Xi − θ(i+ 1) + θ(i)

(θ(i)−Xi) ∆

with Ib = {i = 1, ..., n : |θ(i) − Xi| > b} and an appropriate choice for b
turned out to be an improvement.



CHAPTER 2. A HIERARCHY OF MODELS 20

Diffusion parameters

The idea is to use the same trick as above, squaring (2.10) leads to

(dXt)
2 = κ2 · (θ −Xt)

2 · dt · dt+ κ · (θ −Xt) · σ ·Xp
t · dt · dBt.

According to the Ito-calculation-rules (A.5) one obtains the following relation
between (dXt)

2 and Xt:

ln (dXt)
2 = 2 ln (σ) + ln (dt) + 2p ln (Xt) = a+ b ln (Xt) .

That is exactly equation (2.9). Thus the estimation of p and σ works as
above.

2.3 Model 3 - Model 1 driven by fBM

Model 1 and 2 implicitly share one characteristic. dBti and dBti+1
are un-

correlated. In other words the fact that it is raining today does not affect
the probability that it is going to rain tomorrow. Subjectively one would say
that this does not fit with reality or mathematically that dBti and dBti+1

are correlated. It seems plausible that there are periods when it rains more
than usual and that there are periods when it rains less than average. Figure
approves that impression.

Figure 2.9: Moving average, Schleswig, 1947-2003

Although the moving averages do not strongly depart from the mean there
are periods when the medium term average is above or below the longterm
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mean.

It seems to be worth a try to model a long term relationship. Hereby the
model construction allows an ex post test (by parameter estimation) if there
is a long term relationship or not.

Model 3 is a refinement of model 1. It does only take into account a
constant mean

(2.11) dXt = κ(θ −Xt)dt+ σXp
t dB

H
t

with t ≥ 0, θ > 0, κ ≥ 0, H ∈ [1
2
, 1) and the initial point value X0 = x0.

The long term relationship is determined by dBH
t . Hereby BH denotes frac-

tional Brownian motion with Hurst parameter H. One can think of ∆BH
ti

as the increment of fractional Brownian motion respectively the discretisa-
tion of dBH

t . The Hurst parameter determines the longterm relationship. It
originates from analysing the water amount of the Nil river by Hurst. It was
discovered that water amount distributions of many rivers are described by
Hurst factors H ∈ [1

2
, 1).

Mandelbrot in [Man83] gives an interesting introduction.

2.3.1 Fractional Brownian motion

This subsection particularly benefitted from [MvN68], [Die02] and [DHPD00].
As it is only a very short overview given the interested reader is referred to
the sources.

In the originating work [MvN68] Mandelbrot and van Ness defined frac-
tional Brownian motion by its stochastic representation
(2.12)

BH
t =

1

Γ
(
H + 1

2

)
 0∫
−∞

[(t− s)H−
1
2 − (−s)H−

1
2 ]dBs +

t∫
0

(t− s)H−
1
2 dBs


with the Gamma function

Γ(x) =

∞∫
0

ux−1e−udu

and the Hurst parameter H ∈ (0, 1). Bs again denotes the ordinary Brownian
motion which one recovers by setting H = 1

2
. One can compute the variance

of BH
t as

V ar
(
BH
t

)
= αHt

2H
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for a constant αH . A fractional Brownian motion is called standardised
if αH = 1. In the following we will implicitly assume that we deal with
standardised fractional Brownian motion which is uniquely determined by

• BH
t possess stationary increments,

• BH
0 = 0, E(BH

t ) = 0 for t ≥ 0,

• E
(
(BH

t )2
)

= t2H for t ≥ 0,

• BH
t is normally distributed for t > 0.

Furthermore it is supposed to have continuous trajectories. The Kolmogoroff
criterion guarantees that such a version exists.

Short calculation shows that the covariance kernel is as follows

(2.13) ρ(s, t) = E
(
BH
s B

H
t

)
=

1

2

(
t2H + s2H − (t− s)2H

)
.

Note that mean and covariance structure uniquely characterise the finite-
dimensional distributions in case of Gaussian processes (see for example
[Die02]).

There are two properties of fractional Brownian motion which are partic-
ularly interesting to us. That is self similarity and long range dependence.
A process Xt exhibits long range dependence if∑

n≥1

r(k) =∞

holds for r(k) = cov(Xn, Xn+k). Secondly we call a process Xt self similar
with Hurst parameter H ∈ (0, 1) if

(
XH
at

)
t≥0

and
(
aHXH

t

)
t≥0

possess the
same probability law.
As in the case of Gaussian processes the finite dimensional distributions are
uniquely determined by mean and covariance structure we can conclude from
(2.13) that fractional Brownian motion is self similar.
Furthermore in the case of H > 1

2
it is long range dependant, too. For ex-

planation see e. g. [Die02].

The increment process X = {Xi : i = 0, 1, ...} of fractional Brownian
motion is called fractional Gaussian noise and defined by

Xi = BH
i+1 −BH

i .
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The Xi are normally distributed with E (Xk) = 0 and V ar (Xk) = 1.The
auto-variance kernel is given by

(2.14) r(ti) =
1

2

(
|i− 1|2H − 2|i|2H + |i+ 1|2H

)
.

Using (2.14) one can show that the covariances are positive if H > 1
2

and
negative if H < 1

2
. If H = 1

2
the covariances are 0 which corresponds to the

independence of the increments of an ordinary Brownian motion.
Furthermore the (fractional) increment process is self-similar. The proof

uses the self-similarity of the underlying fractional Brownian motion. As we
deal with a normal distributed process it is only necessary to confirm that
mean and covariance function of XH

mt and mHXH
t are equal. Obviously both

expectation values are zero. Therefore only one calculation is necessary:

cov
(
Xkm + ...+X(k+1)m−1, X`m + ...+X(`+1)m−1

)
= cov

(
BH

(k+1)m −BH
km, B(`+1)m −BH

`m

)
= cov

(
mHBH

k+1 −mHBH
k ,m

HBH
`+1 −mHBH

`

)
= cov

(
mHXk,m

HX`

)
.

Again we have to define what

t∫
0

f(s,Xs)dB
H
s

is. A careful introduction to fractional integration would go beyond the
scope of this thesis. The concept used is the stochastic integration type
introduced by Duncan, Hu, Pasik-Duncan (see [DHPD00]). Essentially frac-
tional Brownian motion is no semi-martingale. Therefore the Ito-formula as
it is presented in chapter 2 cannot be applied to stochastic processes driven
by a fractional Brownian motion.

2.3.2 Parameter estimation

Again we try to use the methods we have already developed.
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Drift parameters

To estimate the drift parameters we again take the expectation of the integral
presentation of the SDE (2.11). That is

E (Xt −X0) = κE

 t∫
0

(θ −Xs)ds

+ σE

 t∫
0

Xp
sdB

H
s


which again simplifies to

E (Xt −X0) = κE

 t∫
0

(θ −Xs)ds

 .

There is the same situation as in the case of normal Brownian motion. The
estimation of θ and κ can be done as above (independently of the diffusion
parameters).

Diffusion parameters including Hurst factor

As well in the case of the diffusion parameters the method used for model 1
and 2 is adapted. Aim is to estimate the Hurst factor H together with the
parameters σ and p in one single step. We square SDE (2.11) and obtain:

(dXt)
2 = κ2 · (θ −Xt)

2 · dt · dt+κ · (θ −Xt) ·σ ·Xp
t · dt · dBH

t +σ2 ·X2p
t dB

H
t

2
.

Using the calculation rules that expression can be simplified to

E
(
(dXt)

2) = σ2 ·X2p
t E

((
dBH

t

)2
)
.

What is E
((
dBH

t

)2
)

? One can calculate

E
(
dBH

t

2
)

= V ar
(
dBH

t

)
+ E

(
dBH

t

)2

= V ar
(
dBH

t

)
+ 0

= dt2H .

Thus

(2.15) E
(
(dXt)

2) = σ2 ·X2p
t · dt2H
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holds and the logarithmic version looks as follows

ln
(
(dXt)

2) = 2 ln (σ) + 2H ln (dt) + 2p ln (Xt) = a(H) + b ln (Xt) .

We have got an expression in the three variables σ, p and H independently
of θ, κ. We distinguish two cases:

1. discretisation ∆ 6= 1 for dt:
We get the three estimators as the minimising triple of

(2.16) min
a,b,H
|| log

(
(Xn+1 −Xn)2)− a− b log(Xn)||22.

Again the minimum is computed with the Gauss-Newton algorithm.

2. discretisation ∆ = 1 for dt:
In this case the equation is independent of the Hurst factor H

E
(
(dXt)

2) = σ2 ·X2p
t .

Therefore we can calibrate the parameters θ, κ, σ and p as in model 1
and 2 independently of H. So in this case we can do the model refine-
ment ex post by determining the Hurst factor.

If ∆ = 1 one needs a method to calibrate the Hurst factor H. There are
many methods to estimate H if fractional Gaussian noise is given. In the
existent case the recorded data are not the fractional Gaussian noise itself.
The data are assumed to follow the SDE (2.11) driven by Gaussian noise,
that is dBH

t .
At this point we know or at least we can estimate all variables in (2.11) ex-
cept the Hurst factor which determines the Gaussian noise.

To separate the dBH
t -term we discretise the SDE (2.11). Actually every

discretisation scheme can be used. Within this thesis the explicit Euler is
applied. That means for (2.11) with Y = ∆Bn

Xn+1 −Xn = κ (θ −Xn) ∆ + σXp
n ·
√

∆Yn.

We get an approximated sample of dBH
t by determine the zero point process

Y . The Euler scheme leads to a linear equation which can be solved directly.
By doing so we obtain from each data series one sample of Gaussian noise.
One possibility to estimate the Hurst factor 1

2
< H < 1 from such a sample

is the
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Aggregated variance method: The method is presented as it is de-
scribed in [Die02] where the interested reader can find a detailed discussion.
The aggregated variance method is applied on a Gaussian noise sample Yk
on {0, 1

N
, ..., N−1

N
}. The method uses the self-similarity of the sample. It is

because of the self-similarity property that the aggregated process X(m) =(
X

(m)
k

)
k∈N0

with

X
(m)
k =

1

m

(
Xkm + ...+X(k+1)m−1

)
and mH−1X has asymptotically the same finite dimensional distributions.
Especially

V ar
(
X

(m)
k

)
= m2(H−1)V ar (Xk)

holds. A sensible estimator for V ar
(
X

(m)
k

)
= V ar

(
X

(m)
0

)
for every k is

̂

V ar
(
X

(m)
0

)
=

1

M

[N
m

]−1∑
i=0

(
X

(m)
i −X(m)

)2

with

X(m) =
1

[N
m

]

[N
m

]−1∑
i=0

X
(m)
i .

Plotting log

(
̂

V
(
X

(m)
0

))
versus log (m) one gets an estimator for 2(H − 1)

from the slope of the best fit straight line.

Remark: The given procedure to estimate the parameters of the SDE can
be applied to any SDE with the structure

dXt = g(t,Xt)dt+ f(t,Xt)dB
H
t .

2.4 Model 4 - Model 2 driven by fBM

The next model is the natural continuation from what we have done so far.
It combines refinements of model 2 and model 3.

(2.17) dXt = dθ(t) + κ(θ(t)−Xt)dt+ σXp
t dB

H
t

with t ≥ 0, θ > 0, κ ≥ 0, H ∈ [1
2
, 1) and initial point value X0 = x0. It

describes a mean-reverting process with a long-term-relationship and a non-
constant mean θ(t).
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Parameter estimation

The parameter estimation happens as in the models above.

Drift parameters

Because of the properties of the chosen fractional integral version

E (dXt) = E (dθ(t)) + κE ((θ −Xt) dt)

holds. One obtains the estimator for the drift parameters as in model 2.

Diffusion parameters including Hurst factor

Again squaring (2.17) leads to

(2.18) E
(
(dXt)

2) = σ2 ·X2p
t · dt2H .

and σ, p and H can be calibrated as in model 3.

Summary

This thesis is a first approach to fit the amount of rain to stochastic differ-
ential equations particularly mean-reverting processes. The initial problem
is to fit the parameters to the chosen model which is done in this chapter.
As we do not know the density of the mean-reverting processes in general
we cannot apply a likelihood approach. Therefore we have to do a moment
matching. In this thesis we present some ideas to estimate the drift and
diffusion parameters as well as we develop techniques to fit the data to an
fBM-approach.



CHAPTER III

Simulating the models

If the rain process is given by (2.1), (2.10), (2.11) or (2.17) the price P at
time t of a rain derivative is calculated as

(3.1) P (t) = exp

 T∫
t

r(u)du

E[f (Xt1 , ..., Xtn)]

with maturity T and riskfree interest rate r ∈ C1 (R+,R+). This pricing
method is known as expectation principle. As none of the SDEs is analyt-
ically solvable numerical integration is necessary to compute the price of a
rain derivative.

There are various possible stochastic integration schemes. Three differ-
ent schemes are used within this thesis. The schemes and short derivations
are presented in this chapter. Hereby distinction between integration after
Brownian motion and fractional Brownian motion is requisite.

3.1 Integration schemes for BM

Most important tool to construct numerical integration schemes is stochastic
Taylor expansion. But as only first and second term are necessary for the
integration schemes used in this thesis the whole stochastic Taylor expansion
has not to be built up. A light version suffices.
An extensive book about this topic is [KP92].

We construct the beginning of the stochastic Taylor expansion by means
of Ito’s formula. Note that this construction only holds for semi-martingales
W , which is a property Brownian motion fulfills, but fractional Brownian

28
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motion does not.

Let

(3.2) Xt = Xt0 +

t∫
t0

a(s,Xs)ds+

t∫
t0

b(s,Xs)dWs

be an Ito-process and f(t, x) ∈ C1,2([0,∞) × R)1. Then f(t,Xt) is again an
Ito-process and it holds

f(t,Xt) = f(t0, Xt0) +

t∫
t0

∂f(s,Xs)

∂t
ds+

t∫
t0

a(s,Xs)
∂f(s,Xs)

∂x
ds

+
1

2

t∫
t0

b2(s,Xs)
∂2f(s,Xs)

∂x2
ds+

t∫
t0

b(s,Xs)
∂f(s,Xs)

∂x
dWs.

Next a(s,Xs) and b(s,Xs) are substituted in (3.2) by its Ito formula repre-
sentation. That means for the first integral in (3.2):

t∫
t0

a(Xs, s)ds

=

t∫
t0

(
a(t0, Xt0) +

s∫
t0

a(u,Xu)
∂a(u,Xu)

∂t
du+

s∫
t0

a(u,Xu)
∂a(u,Xu)

∂x
du

+
1

2

s∫
t0

b2(u,Xu)
∂2a(u,Xu)

∂x2
du+

t∫
t0

b(u,Xu)
∂a(u,Xu)

∂x
dWu

)
ds

= a(t0, Xt0)

t∫
t0

ds+Ra(t)

with

Ra(t) =

t∫
t0

s∫
t0

a(u,Xu)
∂a(u,Xu)

∂t
duds+

t∫
t0

s∫
t0

a(u,Xu)
∂a(u,Xu)

∂x
duds

1The idea can easily be extended to functions f : R −→ R
n.
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+
1

2

t∫
t0

s∫
t0

b2(u,Xu)
∂2a(u,Xu)

∂x2
duds+

t∫
t0

t∫
t0

b(u,Xu)
∂a(u,Xu)

∂x
dWuds.

One can follow that

E (Ra(t)|Ft0) = O
(
∆2
)

and E
(
R2
a(t)|Ft0

)
= O

(
∆3
)

with ∆ = t− t0. Analogously

t∫
t0

b(Xs, s)dWs

=

t∫
t0

[b(t0, Xt0) +

s∫
t0

a(u,Xu)
∂b(u,Xu)

∂t
du+

s∫
t0

a(u,Xu)
∂b(u,Xu)

∂x
du

+
1

2

s∫
t0

b2(u,Xu)
∂2b(u,Xu)

∂x2
du+

t∫
t0

b(u,Xu)
∂b(u,Xu)

∂x
dWu]dWs

= b(t0, Xt0)

t∫
t0

dWs +Rb(t)

with
E (Rb(t)|Ft0) = O(∆2) and E

(
R2
b(t)|Ft0

)
= O(∆2).

This local error estimation is a smart tool to prove the global approximation
error. As in the deterministic case stability and consistency are equivalent
to convergence. A detailed discussion of this topic can be found in [Sch03].

3.1.1 Euler scheme

Neglecting the remainders leads to the Euler scheme:

(3.3) Xn+1 = Xn + a (tn, Xn) ∆tn + b (tn, Xn) ∆W.

Hereby ∆tn := tn+1 − tn is the stepsize and ∆W a random variable. In the
case of the first and second model, ∆W = ∆B ∼ N(0,∆tn) is the increment
of a Brownian motion.

Obviously the Euler scheme can be obtained more easily as the discreti-
sation of the stochastic integral

Xt = Xt0 +

t∫
t0

a(s,Xs)ds+

t∫
t0

b(s,Xs)dZs.



CHAPTER 3. SIMULATING THE MODELS 31

Thus we get

(3.4) Xn+1 = Xn + a (tn, Xn) ∆tn + b (tn, Xn) ∆Z

for any stochastic process Z. Particularly it holds for the fractional Brownian
motion, too.

It can be derived from stochastic Taylor expansion that the explicit Euler
method has a strong convergence order of 0.5. Again this result only holds
for semi-martingales.

We call a numerical integration scheme strongly convergent towards the
exact solution Z with strong convergence order γ1 if

(3.5) lim
∆t→0

|E (|ZtN −XN | |F0) | ≤ C∆γ1
t .

with ∆t = max
ti1 ,...,tin

|ti+1 − ti|. The explicit Euler method has a weak conver-

gence order γ2 = 1 for semi-martingales. We say that a numerical integration
scheme converges weakly towards the exact solution Z if

(3.6) lim
∆t→0

|E (ZtN |F0)− E (XN |F0) | ≤ C∆γ2
t .

3.1.2 Milstein scheme

To obtain the Euler scheme we neglected the remainders. To get an inte-
gration scheme of higher order we have to take into account the next higher
term of the stochastic Taylor expansion. Therefore we compute one more
addend of the remainder term by applying the Ito-formula on the addend∫ t
t0

∫ s
t0
b(u,Xu)

∂b(u,Xu)
∂x

dWudWs. We obtain

t∫
t0

s∫
t0

b(u,Xu)
∂b(u,Xu)

∂x
dWudWs

=

t∫
t0

s∫
t0

(
b(t0, Xt0)

∂b(0, X0)

∂x
+

u∫
t0

∂

∂t
(b(v,Xv)

∂b(v,Xv)

∂x
)dv

+

u∫
t0

(a(v,Xv)
∂

∂x
+

1

2
b2(v,Xv)

∂2

∂x2
)(b(v,Xv)

∂b(v,Xv)

∂x
)dv
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+

u∫
t0

b(v,Xv)
∂

∂x
(b(v,Xv)

∂b(v,Xv)

∂x
dWv

)
dWudWs

= b(t0, Xt0)
∂b(t0, Xt0)

∂x

t∫
t0

s∫
t0

dWudWs +Rbb(t)

with
E (Rbb(t)|Ft0) = O(∆2) and E

(
R2
bb|Ft0

)
= O(∆3).

Discretisation and neglecting the remainder terms leads to the explicit Mil-
stein scheme for semi-martingales

Xn+1 = Xn + a (tn, Xn) ∆tn + b (tn, Xn) ∆Rn

+
1

2
b (tn, Xn)

∂b

∂x
(tn, Xn)

(
(∆Rn)2 −∆tn

)
as

t∫
t0

s∫
t0

dWudWs =

t∫
to

WsdWs =
1

2

(
(Wt −Wt0)2 − (t− t0)

)
.

Because of its analytical properties we use the implicit Milstein scheme or
more precisely the drift implicit Milstein scheme. That means that Xn in
the drift term is replaced by Xn+1. The implicit Milstein scheme applied on
(A.1) is

Xn+1 = Xn + a (tn+1, Xn+1) ∆tn + b (tn, Xn) ∆Rn

+
1

2
b (tn, Xn)

∂b

∂x
(tn, Xn)

(
(∆Rn)2 −∆tn

)
.

The implicit Milstein possesses a weak convergence order of γ1 = 1 and a
strong convergence order of γ2 = 1. Thus it is more complicated as the ex-
plicit Euler but has a higher strong convergence order.

Furthermore it covers one decisive characteristic of the SDEs (2.1) and
(2.10) (with appropriate parameter constellation). They are analytically pos-
itive. Therefore the integration schemes are supposed to maintain this prop-
erty.

Definition 3.1 An integration scheme is said to be positive (or to have an
eternal lifetime) if

P ({Xn+1 > 0|Xn > 0}) = 1.
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The explicit Euler scheme cannot satisfy this demand, but the implicit Mil-
stein can (see [Kah04]). Therefore it is a suitable choice for integrating the
SDEs (2.1) and (2.10). Unfortunately the Milstein scheme does not hold for
fractional Brownian motion. So far there is only the explicit Euler scheme
presented to integrate fractional Brownian motion.

3.2 Integration schemes for fBM

The SDE (2.11) is also supposed to describe a positive process. But the
explicit Euler cannot provide positivity. Practically it would be sufficient if
almost all trajectories remain positive or if

P ({Xn+1 > 0|Xn > 0}) ≈ 1.

Tests show (see chapter 4, 4.11) that the explicit Euler does not fulfill this
weaker property either. Integrating (2.11) or (2.17) with the estimated pa-
rameters leads to a high percentage of negative trajectories.

As the theory of stochastic Taylor expansion for fractional Brownian mo-
tion has not been developed yet one possible approach is focusing on the
Euler scheme and trying to improve it.

Remark: There are Ito formulas for fractional Brownian motion but they
need derivatives which cannot be computed in general.

3.2.1 Balanced implicit method

One suitable improvement of the straightforward Euler scheme is the bal-
anced implicit method (BIM)

Xn+1 = Xn + a (tn, Xn) ∆tn + b (tn, Xn) ∆Z + (Xn −Xn+1)Cn (Xn)

Cn (Xn) = c0 (Xn) ∆ + c1 (Xn) |∆Z|

with bounded control functions c0 and c1. It must hold for the control func-
tions that

1 + c0 (Xn) > 0,(3.7)

c1 (Xn) ≥ 0(3.8)

(see [Sch97a]). It does also hold for processes which do not have the semi-
martingale property because its derivation does not use the Ito formula.
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As the control functions depend on the process, the balanced implicit
method cannot guarantee positivity and convergence in general. But for
every process (or class of processes) the control functions must be determined
newly.

Particularly we want to integrate (2.11) and (2.17). In this case the BIM
is not positive but the control functions can be chosen such that it guarantees
a weaker kind of positivity.

Definition 3.2 An integration scheme is said to be ε-positive for a constant
ε > 0 if

P ({Xn+1 > 0|Xn > ε}) = 1.

Indeed the BIM is ε-positive for (2.11) with p > 0 and the control func-
tions

c0 = κ,

c1 = σmax (x, ε)p−1 .

Proof: If Xn > ε the following calculation holds

Xn+1 =
Xn + κθ∆− κ∆Xn + σXp

n∆BH +Xn

(
κ∆ + σmax (Xn, ε)

p−1 |∆BH |
)

1 + c0 (Xn) ∆tn + c1 (Xn) |∆BH |

=
Xn + κθ∆ + σXp

n∆BH + σXp
n|∆BH |

1 + c0 (Xn) ∆tn + c1 (Xn) |∆BH |
> 0.

In case of a deterministic function θ(t) the BIM preserves positivity if

θ(tn+1)− θ(tn) + κ∆θ(tn) ≥ 0

⇐⇒ θ(tn+1)

θ(tn)
≥ 1− κ∆.

For the different integration schemes the increments of Brownian motion
and fractional Brownian motion are requisite. As the increments of a Brown-
ian motion with stepsize ∆ are independently N(0,

√
∆) distributed one can

use a pseudo random generator in the simulation.
The increments of a fractional Brownian motion are N(0,

√
∆2H) distributed

but in general not independently. Therefore we cannot simply use the pseudo
random numbers. A little more effort is necessary to simulate general Gaus-
sian noise. There are various algorithms among others the Hosking method
(see [Hos84]).
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3.2.2 Hosking method

Within this thesis the Hosking method is used to simulate fractional Gaussian
noise (Xk)k∈N0

although it can be applied more generally. The presentation
bases on [Die02]. The idea of the Hosking algorithm is to determine the
distribution of Xn+1, if Xn, ..., X0 are given.

The following notations are used: The covariance kernel describes the
stochastic relations between the increment Xn and the following. It is given
by

(3.9) r(k) = E(XnXn+k)

with n, k ∈ N0. Without loss of generality r(0) = 1 is assumed.
The (n+ 1)× (n+ 1)-covariance matrix is given by

Γ(n) = (r(|i− j|))i,j=0,...,n.

Furthermore a covariance vector

c(n) = (r(1), ..., r(n+ 1))T

is constructed. With the indicator function χ the (n+ 1)× (n+ 1)-matrix

F (n) = (χ{i=n−j})i,j=0,...,n

is a flip matrix.
To simplify the notation the following abbreviations are used

d(n) = Γ(n)−1c(n),

τn = d(n)TF (n)c(n) = c(n)TF (n)d(n),

Φn =
r(n+ 2)− τn

σ2
n

.

With these notations the matrix Γ can be expressed recursively:

Γ(n+ 1) =

(
1 c(n)T

c(n) Γ(n)

)
=

(
Γ(n) F (n) · c(n
c(n)T · F (n) 1

)
.

Calculation shows that for the inverse matrix

Γ(n+ 1)−1 =
1

σ2
n

(
1 −d(n)T

−d(n) σ2
nΓ(n)−1 + d(n)d(n)T

)
(3.10)
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=
1

σ2
n

(
σ2
nΓ(n)−1 + F (n)d(n)d(n)TF (n) −F (n)d(n)
−d(n)TF (n) 1

)
(3.11)

holds.

Now we want to prove that

Xn+1 ∼ N(µn, σ
2
n)

with

µn = c(n)TΓ(n)−1(Xn, ..., X0)T ,

σ2
n = 1− c(n)TΓ(n)−1c(n).

It is only necessary to put the pieces together. One can conclude from (3.10)
that

(y, xT )Γ(n+ 1)−1

(
y
x

)
=

(y − d(n)Tx)2

σ2
n

+ xTΓ(n)−1x

holds for x ∈ Rn+1 and y ∈ R which shows that Xn+1 ∼ N(µn, σ
2
n) indeed.

Now it is possible to determine the distribution of Xn+1 if X0, ..., Xn are
known (respectively have been already simulated). This theoretical result
becomes usable by constructing a recursion for µn and σn. Again with (3.10)
computing shows that

σ2
n+1 = σ2

n −
(γ(n+2)−τn)2

σ2
n

,

d(n+ 1) =

(
d(n)− ΦnF (n)d(n)

Φn

)
is valid which leads explicitly to σn and implicitly to µn.
The recursion starts with µ0 = r(1)X0, σ

2
0 = 1− r(1)2 and τ0 = r(1)2.

To sum up the Hosking algorithm allows to simulate fractional Gaussian
noise. Thus the numerical integration for model 3 and 4 can be implemented
as well.

Summary

As the models set up in chapter 2 cannot be analytically integrated in general
numerical integration schemes are requisite. The Euler scheme was presented.
It is the discretisation of a stochastic integral equation. This scheme allows
to integrate all four models but has a low convergence order and further-
more leads to negative integration paths. That is undesirable as it does not
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correspond with the analytical properties of the SDEs respectively does not
correspond with the properties of rain which are described by these SDEs.
In case of ordinary Brownian motion we can use the Ito formula which is
the essential tool to set up stochastic Taylor expansion. The Euler scheme
for Brownian motion can be derived from stochastic Taylor expansion by
neglecting all terms of higher order than 1. Taking into account the next
higher term the Milstein scheme is obtained. The implicit Milstein scheme
is an appropriate tool to integreate (2.1) and (2.10) as it has a higher strong
convergence order as the Euler scheme and as it can preserve positivity.
To integrate the SDEs driven by fractional Brownian motion ((2.11) and
(2.17)) positively an extension of the Euler scheme was presented, the Bal-
anced implicit method.
Eventually in case of fractional Brownian motion correlated random num-
bers are necessary for numerical integration. The Hosking algorithm which
creates them was presented.



CHAPTER IV

Numerical tests and validation

The chapter is divided into two sections. Firstly the results of parameter
estimation are presented. Secondly prices are calculated. Mostly the weather
station Schleswig services as example. Data from 1947 till 2003 are used.
Months are the underlying time unit and 0.1 mm per m2 the basic rain unit.
Thus if θ̂ = 740 is estimated it means that there was an average precipitation
of 74 mm per m2 at the weather station Schleswig during the years 1947 till
2003.

4.1 Parameters

Within this subsection the stability of the different parameter estimators is
analysed. It mainly focus on the impact of the length of data series and on
how far the parameters respectively their estimators influence each other.

4.1.1 Model 1

Drift parameters

The theoretical results in chapter 2 prove that with the realisations Y1, Y2, ...
the estimators

θ̂ =
1

n

n∑
i=1

Yi

for θ and

κ̂ =
1

n

n∑
i=1

Yi+1 − Yi
θ − Yi

38
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for κ are unbiased.
Figures 4.1 and 4.2 underline that this property holds in praxis, too. For
figure 4.1 one path is simulated with the given parameters θ, κ, σ and p.
From this simulated path θ is reestimated. In figure 4.2 the unknown θ is
estimated from real historic data series. Hereby the length of data taken
into account increases. One observes that the path of estimated θ seems to
converge towards θ̂ ≈ 740.

Figure 4.1: θ̂ vs. length (simulated) data series
κ = 1.1, σ = 6.7, p = 1.0, h = 0.25, θ = 739.8

Figure 4.2: θ vs. length (real) data series
Schleswig, data series: 1947-2003
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Now the modified κ-estimator

κ̂b =
1

#Ib

∑
i∈Ib

Xi+1 −Xi

(θ(i)−Xi) ∆
.

is considered. To test the modification on suitability the estimator is plotted
against the boundary b (as in chapter 2, figure 2.5). Again a path is simu-
lated with the given parameters θ, κ, σ and p. Afterwards κ is reestimated
depending on b.

Figure 4.3: κ vs. bound
θ = 739.8, σ = 6.7, p = 1.0, h = 0.25

One sees that the unmodified estimator (thus b = 0) is far away from the
solution κ. With growing b the estimation draws near the real solution. Even
for a very high boundary of 100 the modified estimator is much better than
the unmodified. Thus the modified estimator proves to be stable concerning
the bound.
What the picture does not show is the behaviour for even higher bounds.
It does not become unstable but it simply stops. Depending on the path
there is a bound which is so high that no data points are taken into account
anymore. So after a particular bound the estimation does not work anymore,
but as long as it works it is stable.
In the following the modified estimator κ̂b with b = 20 is used.

As in the case of θ in figure 4.4 κ̂b is plotted against the length of data
series.
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Figure 4.4: κb vs. length (simulated) data series
θ = 739.8, σ = 6.7, p = 1.0, h = 0.25

Although in chapter 2 there is only proven that κ̂ is unbiased κ̂b seems to be
unbiased, too.

Figure 4.5 shows the impact of θ on the estimation of κ. The path is
simulated with θ = 739.8.

Figure 4.5: Impact of θ on κ
θ = 739.8, κ = 1.1, σ = 0.667, p = 0.981, h = 0.25

As expected θ strongly influences κ̂b. But with rather exact estimation of θ
one gets sufficient results.
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Diffusion parameters

The diffusion parameters σ and p are estimated in one step. They are cal-
culated from a smoothing function. In figure 4.6 only 15 points can be seen
because the data points have been accumulated in buckets. By doing so the
influence of the statistical mavericks is decreased.

Figure 4.6: Best fit straight line
for estimating σ and p

Again the relation between path length and estimation is analysed (see
figures 4.7 and 4.8).
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Figure 4.7: σ vs. length (simulated) data series
θ = 739.8, κ = 1.1, h = 0.25

Figure 4.8: p vs. length (simulated) data series
θ = 739.8, κ = 1.1, h = 0.25

Also in this case the estimators stabilise with increasing path length. But
it is remarkable that σ is estimated below the real value and p above. This
effect appears for other paths as well. A possible explanation is that this
effect is due to the used integration scheme.

To test this assumption the same procedure as above is made with a path
simulated by the BIM. The result is visualised in the following figures 4.9
and 4.10:
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Figure 4.9: σ vs. length (simulated) data series, BIM
θ = 739.8, κ = 1.1, h = 0.25

Figure 4.10: p vs. length (simulated) data series, BIM
θ = 739.8, κ = 1.1, h = 0.25

Firstly the lower convergence speed of the BIM is reflected in the higher
fluctuations. But in contrast to the Milstein scheme the estimators of p and
σ slowly converge against the input values.
Obviously the integration schemes differently deal with the volatility pa-
rameters. (There is no decisive difference considering the drift parameters.)
As this property is most likely to influence the pricing only one integration
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scheme is used if prices are compared. There are two reasons for the BIM:
On the hand there is a convergence. On the other hand only the BIM can
handle Brownian and fractional Brownian motion. Thus the BIM is chosen
in those cases.

4.1.2 Model 2

As the estimation of the function θ(t) is new only the estimation of its pa-
rameters is analysed in this subsection. Concerning κ, σ and p the results
from above hold analogously.

In chapter 2 the presented plots show θ(t) with 2 sine terms. The approx-
imation to the real averages seems sufficiently. More general the function

θ(t) = m+
n∑
i=0

αi sin

(
(2i+ 1)π (t− v)

6

)
was proposed. See remark 4.1 why n = 3 is an appropriate choice.

The parameters m,α0, α1, α2, α3 and v are estimated with regard to min-
imising the difference to the average (see also 2). Thus the estimators for
m,α0, α1, α2, α3 and v are obtained as minimiser of

min
m,α0,α1,α2,α3,v

||f(·,m, α0, ..., α3, v)−D(·)||22

with

f(t,m, α0, α1, α2, α3, v) = m + α0 sin

(
π (t− v)

6

)
+ α1 sin

(
3π (t− v)

6

)
+ α2 sin

(
5π (t− v)

6

)
+ α3 sin

(
7π (t− v)

6

)
and D(t) average at t. There are a lot of numerical schemes to solve this
least-square problem. For this thesis the Gauss-Newton algorithm is used
(see for example [Sch97b]).

A slightly different procedure is estimating m as θ̂ in advance (as in model
1) because the process is still supposed to fluctuate around that mean. Then
one computes the minimiser of

min
α0,α1,α2,α3,v

||f̂(·, α0, ..., α3, v)−D(·)||22
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with

f̂(t, α0, α1, α2, α3, v) = θ̂ + α0 sin

(
π (t− v)

6

)
+ α1 sin

(
3π (t− v)

6

)
+ α2 sin

(
5π (t− v)

6π

)
+ α3 sin

(
7π (t− v)

6π

)
.

It does lead to only marginally different values e. g. 736.9 becomes 739.8 in
the second estimation.

Remark 4.1 There is still the question to answer how many sine terms are
necessary. The solution can only be found individually. Our example is the
weather station Schleswig but there similar results for the other weather sta-
tions mentioned in chapter 1.
Considering 1, 2, 3 or 4 sine terms leads to the following parameter constel-
lations:

m α0 α1 α2 α3 v
n = 1 736.9 191 - - - 0.485
n = 2 736.9 191 39 - - 0.479
n = 3 736.9 191 39 −14 - 0.479
n = 3 736.9 191 39 74 −61 0.479

Table 4.1: Impact of number of sine terms

Although there seems to be a significant change from three to four sine
terms, the effect on the pricing is very small (see table 4.7). This also holds
for the step from 2 to 3 and even for the step from 1 to 2 sine terms. Therefore
the choice of 4 sines is maybe not necessary but anyway sufficient. Thus the
function

θ(t) = m+
3∑
i=0

αi sin

(
(2i+ 1)π (t− v)

6

)
is considered in this (and also in the following) chapter.

4.1.3 Model 3

Nothing new comes up concerning the drift parameters. But the diffusion
parameters now include the Hurst parameter.
Two different possibilities to estimate the diffusion parameters are introduced
in chapter 2. They depend on the stepsize. The results of both methods are
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compared. As an example stepsizes of ∆ = 1 respectively ∆ = 0.25 are
considered:

∆ = 1 ∆ = 0.25
σ 0.667 0.600
p 0.981 0.996
H 0.535 0.531

Table 4.2: Estimation of diffusion parameters in model 3
θ = 739.8, κ = 1.251

One observes that estimations differ. There are no big differences in
estimation p andH. But the variation of σ-calibration is stronger. In the next
subsection the influence of these estimation triples on the prices is analysed
(see table 4.9).

As there is no new estimation technique in model 4 no further analysis
is needed. The logically next step is the initial motivation - the pricing of
options.

4.2 Integration

Four different options are considered in this section, they refer to a rain index
summing up rain

RS,T =
T∑
i=S

Xi.

The payoff functions of the options are as follows

• Call: f(X,S, T ) = (RS,T −K)+, K = 11096;

• Put: f(X,S, T ) = (K −RS,T )+, K = 7989;

• Barrier: f(X,S, T ) = (RS,T −K)+ · 1{RS,T>B}, K = 11096, B = 12428;

• Binary: f(X,S, T ) = 1000 cot 1{ max
S≤i≤T

Xi>B}, B = 1997.

Note that they are all Asian type option.
The parameter constellations base on the first section of this chapter.
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4.2.1 Euler versus Milstein and BIM

The interest of this thesis is not analysing numerical integration schemes with
regard to their numerical properties like convergence. But it is necessary to
find integration schemes which map the analytical properties of the mod-
els (2.1), (2.10), (2.11) and (2.17). As already mentioned all these models
are supposed to describe positive stochastic processes. One can theoretically
show that the Euler method cannot preserve positivity (see [Kah04]). The
following pictures are only supposed to underline this theoretical result. Fur-
thermore one gets an impression how many paths become negative depending
on stepsize and path length.

Figure 4.11: Percentage of negative paths (out of 10000 paths)
θ = 739.8, κ = 1.125, σ = 0.667, p = 0.981, T = 12 months

Figure 4.12 shows one path simulated with the Euler scheme. It becomes
visible that this integration scheme creates trajectories which are not similar
to real rain paths.
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Figure 4.12: One path simulated with the Euler method
θ = 739.8, κ = 1.125, σ = 0.667, p = 0.981,∆ = 0.25

As a comparison one path simulated with the Milstein scheme and one
simulated with the BIM are presented.

Figure 4.13: One path simulated with the Milstein method
θ = 739.8, κ = 1.125, σ = 0.667, p = 0.981,∆ = 0.25
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Figure 4.14: One path simulated with the BIM
θ = 739.8, κ = 1.125, σ = 0.667, p = 0.981,∆ = 0.25

The Euler method applied on (2.10), (2.11) and (2.17) does not work bet-
ter than in the case of (2.1). Therefore the Milstein scheme or the Balanced
Implicit method is used in the following.

4.2.2 Model 1

The four options are priced assuming that rain follows the SDE (2.1). The
integration happens with the BIM. The prices are calculated with Monte
Carlo-simulation. The first picture shows that Monte-Carlo-simulation is a
suitable pricing tool if the number of simulated paths is sufficiently high:
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Figure 4.15: Convergence BIM in model 1
θ = 739.8, κ = 1.125, σ = 0.667, p = 0.981,∆ = 0.25, T = 12 months

One sees that the put converges faster than the other options.

The prices clearly depend on the parameter input. So this impact is anal-
ysed in the following.
Firstly θ is dealt with. The other parameters remain fix as κ = 1.125, σ =
0.667 and p = 0.981. Again the stepsize is 0.25 and the maturity 12 months.
Values between 735 and 755 are considered reflecting the variation in esti-
mation.

Call Put Barrier Binary
θ = 735 77 20 39 5
θ = 740 85 17 44 5
θ = 745 94 15 49 6
θ = 750 101 13 53 6
θ = 755 109 11 57 6

Table 4.3: Impact of θ on option prices, BIM
κ = 1.125, σ = 0.667, p = 0.981,∆ = 0.25, T = 12 months

As expected one sees that call, barrier and binary prices increase with in-
creasing θ. Vice versa the put value goes down.

In table different κ and their influence on the prices are compared.



CHAPTER 4. NUMERICAL TESTS AND VALIDATION 52

Call Put Barrier Binary
κ = 0.95 129 34 80 11
κ = 1.00 117 27 70 9
κ = 1.05 103 23 58 7
κ = 1.10 89 19 46 6
κ = 1.15 80 16 40 5
κ = 1.20 70 13 31 4

Table 4.4: Impact of κ on option prices, BIM
θ = 739.8, σ = 0.667, p = 0.981,∆ = 0.25, T = 12 months

Obviously κ has strong influence on the prices. The lower the κ is the higher
the call and barrier prices are. That is plausible because a low speed of mean
reversion forces the stochastic process to return from extremes slowly. Thus
the phases of very high and of very low prices are long. As the call option
possesses an asymmetric risk structure, it superproportionally profits from
the ups which leads to a higher option price.
A similar argument holds for the binary option. Long up phases lead to
higher probability of a high maximum. Thus it decreases with growing κ
too.
The put option also increases as it profits from the downs above average.

Most option pricing models strongly react on the input of the volatility
parameters. Here it holds, too.

Call Put Barrier Binary
σ = 0.55 41 7 14 3
σ = 0.60 55 11 23 5
σ = 0.65 71 17 34 10
σ = 0.70 87 23 45 14

Table 4.5: Impact of σ on option prices, BIM
θ = 739.8, κ = 1.125, p = 0.981,∆ = 0.25, T = 12 months

Clearly a high σ leads to high option prices. Again the reason for this be-
haviour is the asymmetric risk structure of options. A high volatility leads
to high probability for fortunate sceneries and to a high probability of unfor-
tunate sceneries. Because of the asymmetric risk structure an option holder
can profit from this fortunate scenery but he does not have to carry the risk
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of the unfortunate sceneries. This leads to heavily increasing prices if σ in-
creases.

The next table implies that the second volatility parameter p has a similar
impact on the option prices, as a bigger p leads to higher volatility.

Call Put Barrier Binary
p = 0.94 30 5 8 2
p = 0.96 48 10 18 4
p = 0.98 75 19 37 10
p = 1.00 108 31 63 23

Table 4.6: Impact of p on option prices, BIM
θ = 739.8, κ = 1.125, σ = 0.667,∆ = 0.25, T = 12 months

To sum up the parameter estimation proves to be a very sensitive point in
pricing options. Especially the estimation of the diffusion parameters should
be done very carefully.

4.2.3 Model 2

It follows from the parameter estimation that

θ(t) = 739.8 + 191 sin

(
π (t− 0.479)

6

)
+ 39 sin

(
3π (t− 0.479)

6

)
+ 74 sin

(
5π (t− 0.479)

6

)
− 16 sin

(
7π (t− 0.479)

6

)
and

κ = 1.123.

Calculation shows that
θ(tn+1)

θ(tn)
≥ 1− κ∆

holds for ∆ = 0.25 which is the stepsize used in the following. Thus the BIM
integrates (2.10) positively in this situation.

As for model 1 the relation between path length and prices is visualised.
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Figure 4.16: Convergence BIM in model 2
θ = 739.8, α0 = 191, α1 = 39, α2 = 74, α3 = −16, v = 0.479, κ = 1.123, σ =

0.667, p = 0.981,∆ = 0.25, T = 12 months

Again one can conclude that a Monte Carlo-simulation with more than
50, 000 paths leads to stable option prices.

As already announced the impact of the number of sine terms on the
prices is analysed. Hereby m = 739.8 and number of paths n = 180.000.

Call Put Barrier Binary
α1 = α2 = α3 = α4 = 0, v = 0.49 89 18 46 6
α1 = 191, α2 = α3 = α4 = 0, v = 0.49 100 18 55 12
α1 = 191, α2 = 39, α3 = α4 = 0, v = 0.48 106 18 58 12
α1 = 191, α2 = 39, α3 = −14, α4 = 0, v = 0.48 104 18 56 12
α1 = 191, α2 = 39, α3 = 74, α4 = −16, v = 0.48 106 18 58 12

Table 4.7: Impact of number of sine terms on option prices, BIM
θ = 739.8, κ = 1.123, σ = 0.667, p = 0.981,∆ = 0.25, T = 12 months

Table 4.7 shows that there is a significant difference whether using one sine
term or a constant mean. But the next sine terms have only little influence.
Thus practically one or two sine terms would probably serve very well. To
cover a wider range of possible scenarios four sine addends are used in the
following.

Comparing model 1 and model 2 one sees that the sine-mean leads to
higher or stable option prices. Particularly the Binary option is much more
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expensive if priced with model 2. Its value is doubled. That is plausible as
the random process fluctuates around a non deterministic mean. Thus at
the high points of the sine curve the probability to go beyond the barrier is
higher as if there were a constant mean.

4.2.4 Model 3

It is interesting to see if the Balanced Implicit method leads to convergent
prices also in this case.

Figure 4.17: Convergence BIM in model 3
θ = 739.8, κ = 1.125, σ = 0.667, p = 0.981, H = 0.535,∆ = 0.25, T = 12

months

Actually n = 50, 000 paths delivers stable option prices.

As there is a new parameter - the Hurst factor - the impact of this param-
eter on the option prices is analysed. The Monte Carlo simulation is done
with the BIM.
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Call Put Barrier Binary
H = 0.50 83 18 41 5
H = 0.51 100 20 53 7
H = 0.52 121 22 71 9
H = 0.53 144 24 89 11
H = 0.54 161 26 105 14

Table 4.8: Impact of the Hurst factor on option prices
θ = 740, κ = 1.12, σ = 0.667, p = 0.981,∆ = 0.25, T = 12 months,

n = 60.000

One observes that the higher the Hurst factor is the higher the option prices
are. Again this is plausible because of the asymmetric risk structure of op-
tions. Similar to κ with growing Hurst factor the probability for long up
phases and long down phases increases which leads to rising option prices.
As in the case of the two other diffusion parameters the influence is strong.

The estimation of σ, p and H depends on the stepsize. Two different
triples are presented in the previous section (see table 4.2). Table 4.9 shows
their impact on the prices.

Call Put Barrier Binary
σ = 0.667, p = 0.981, H = 0.535 150 26 93 12
σ = 0.600, p = 0.996, H = 0.531 146 25 91 12

Table 4.9: Different diffusion parameters constellations
θ = 740, κ = 1.125,∆ = 0.25, T = 12 months, n = 60.000

One observes that the two parameter constellations do not lead to signifi-
cantly different option prices. Thus from a pricing point of view the triples
are equivalent.

4.2.5 Model 4

Again the Monte Carlo-simulation leads to convergent option prices.
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Figure 4.18: Convergence BIM in model 4
θ = 739.8, α0 = 191, α1 = 39, α2 = 73, α3 = −16, v = 0.479, κ = 1.123, σ =

0.667, p = 0.981, H = 0.527,∆ = 0.25, T = 12 months

Compared to model 2 one observes that the Hurst factor again acts like a
price booster. The grade of increasing is similar to the one between model 1
and 3.
A comparison between model 3 and 4 shows that the a constant mean leads
to lower option costs. But the difference is not as big as in case of model 1
and 2. That is plausible because the estimator of the Hurst factor in model
4 is lower than in model 3 (0.535 respectively 0.527). That weakens the price
boosting effect of the deterministic mean.

Summary

The parameter estimators were tested. As the theoretical results already
indicated θ̂ is an unbiased estimator. Further κ̂b turned out to be unbiased.
The estimators of the diffusion parameters proved to work as well.
The data series has to be sufficiently long; hereby the drift parameters esti-
mators converge faster.
Considering the diffusion parameters the problem arises that the Milstein
scheme does not simulate the given SDEs properly. The diffusion parame-
ters cannot be reestimated from a simulated path.
It turned out that the two presented estimation techniques for H lead to
slightly different estimations but to equivalent results concerning the prices.
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The estimated Hurst factor is above 0.5, so the rain process is indeed driven
by a fractional Brownian motion. An estimation near 0.5 would have meant
that the refinement is not necessary as that would mean that the process is
driven by an ordinary Brownian motion.



CHAPTER V

Case studies

In the previous chapter rain derivatives are priced based on the models de-
veloped in chapter 1. In this chapter the possible impact of rain options on
a company’s profits and losses is demonstrated. The pricing of the options
bases on model 4 with 4 sine terms.

As appropriate real company data were not available a fictitious situation
is assumed. Importance is attached to a realistic construction. Therefore
public available data flows into the case scenarios so far as they are on hand.
The case study deals with two companies strongly exposed to rain risk. The
one profits from much rain, the other one from few rain. The study focus on
the developments of the two companies over a period of one calendar year.

There are two different rain scenarios analysed. These are the real pre-
cipitation distributions from the years 1991 and 2000 at the weather station
Düsseldorf.

Figure 5.1: Rain in 1991 and 2000, Düsseldorf
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On the other hand there are three risk scenarios analysed. We assume
that both companies hedge their open rain specific risk exposure either with

• an insurance (Scenario B) or

• a rain derivative (Scenario C) or

• not at all (Scenario A).

To analyse the impact of the three different actions in the two different rain
scenarios the profit and loss accounts for both companies are set up.

The companies chosen within this case study are a dam company and a
leisure park which are strongly influenced by the weather event precipitation.
In this fictitious comparison this influencing factor is focussed on.
To make the companies comparable they are both assumed to be situated
near Düsseldorf.
The used rain data are publicly available on www.dwd.de. The years 1969
till 2003 are taken into account for the parameter estimation. The data series
are complete, so there are no lacking days.

Rather ordinary put and call options are considered because of two rea-
sons. On the one hand derivatives are supposed to have a pretty high turnover
at the equity markets. This is only possible if there is a particular degree
of standardisation. On the other hand this circumstances are not yet given.
Actually there are no standardised rain products in Germany.
Let us consider one possible situation to show why this fact also argues for
simple puts and calls. A company wants to buy a rain derivative to hedge
its risk. The most natural and maybe even only available partner is a bank.
We assume that the bank sells an option. So now the bank has got an open
risk exposure. As trades are not high more likely not existing at the equity
markets they cannot resell or hedge their own risk. It would be much more
comfortable for the bank if they can find two companies with opposed risk
structures and arrange the contract. So that the companies hedge one an-
other (unknowingly) and the bank gets a particular margin without any risk
or at least with minimal risk.
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Figure 5.2: Bank as intermediary

The policies are priced with a method called burn analysis (see e.g [Nel96]).
It means that one considers an appropriate number of past years and com-
putes the payoff which would have happened in each year. Taking the average
leads to the estimated price. Disadvantage is that each year only provides
one data set. A low premium of 1% is assumed.

Both security instruments are compared by putting up the P&L of the
two companies. The possible payout of the rain options is listed under other
operating income. This is justified by the factual right to choose (faktisches
Wahlrecht) which holds in the case of weather derivatives.

5.1 The leisure park

The leisure park is publicly open from April to October. In this period there
are 179 business days. The main revenues happen in July and August. Ad-
ditionally some smaller winter events happen. All in all the average revenues
are 4.4 million Euro. The company employs 14 permanent employees with
a salary of 48, 000 Euro gross. In the open months the staff is completed
by seasonal workers with a salary of 18, 000 (between April and November).
Information from www.grevinetcie.com are used.

Insurance

In the insurance scenario the leisure park company buys an insurance with
the following features. The contract only protects the period from April till
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October. The insurance company has to pay off if the rain in one month
increases over a specific barrier. They payoff does not depend on the specific
amount of rain but only on the fact if the barrier is reached. For every month
with more than 100 mm per m2 the leisure park gets 310, 000 Euro.
The advantage for the insurance company is that its loss is capped. The
advantage for the insurance holder - the leisure park company - is that in
most cases they can balance their losses in the operating business. Only in
really extreme weather years the payoff does not suffice.

Option

The alternative rain derivative is as already mentioned rather simple. The
leisure park company buys a call covering the period April, May, June, July,
August, September, October. The call refers to a rain index which sums up
the actual precipitation. The strike is K = 464.8 mm per m2 and the tick
size s = 3, 800. That means that the leisure park company gets 3, 800 Euro
per every 0.1 mm it rains more than 464, 8.

Obviously this choice does not take into account that there are more and
less important months for the companies’ revenues. The reasons for this de-
cision are the same reasons which hold for the choice of simple options. It
makes the option less special and thereby more tradable.

It is positive for the option seller that his payoff increases proportionally.
So in most of the cases he will not have to pay such a big amount of money
as in the case of the insurance policy. Furthermore there are the advantages
which are usually associated which options. The option may fit with his
own risk exposure in so far that the contract means risk hedging for himself
(which is rather unlikely in the case of an insurance). On the other hand he
may be able to resell the option.
Advantage for the option holder is that the payoff function fits better to its
probable profit and loss structure. As well for the holder there is an deriva-
tive specific advantage. Probably the derivative is cheaper as the insurance.
There are various reasons for this phenomenon. Firstly there are the ad-
vantages for the seller (s. a.). Secondly if there is a market for derivatives
there is also market price for derivatives. Therefore the margin cannot be
determined by the seller. Admittedly an insurance company is also exposed
to competition. But the market price building is not that transparent and
efficient.
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5.1.1 Scenario A

Clearly in this scenario the company unrestrictedly profits from advantageous
weather as it has been in 1991. It earns a high profit for the year of 451, 900
Euro which corresponds with 8.8% of the revenues. On the other hand there
is no protection against possible negative impact. This reflects in a negative
result in 2000. There is a total loss of 82, 600 Euro respectively 2.0% of the
revenues.

Figure 5.3: P&L for the leisure park in 1991 and 2000

Although there is a profit per year in total this kind of fluctuating is
disadvantageous for the company. It has to provide a lot of equity to fill
possible gaps respectively it has to raise expensive credits. In the worst case
if it does not get credits to get over the liquidity shortage the company must
declare insolvency.

To avoid those negative impacts the company could protect itself against
rain risk for example by an insurance. That leads to Scenario B.
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5.1.2 Scenario B

The main differences to scenario A are highlighted in red. For clarity a de-
tailed P&L has been omitted at this point. It can be found in the appendix B.

Figure 5.4: P&L cutout for the leisure park in 1991 and 2000, scenario B

The insurance product serves the main purpose very well. Even in the
disadvantageous year 2000 there is still a profit for the year of 149, 900. This
positive result is reached because of the payoff from the insurance company
which is listed under other operating income. For this protection the leisure
park company has to pay a premium which is included in other operating
expenses. That is the reason for the lower profit of 268, 700 Euro in 1991.

5.1.3 Scenario C

This time the company buys the rain option. The differences to scenario A
are highlighted in red.

Figure 5.5: P&L cutout for the leisure park in 1991 and 2000, scenario C

As in scenario B this leads to a lower profit in 1991 and to a higher profit
in 2000.
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Comparing the insurance and the option one observes that there is no
significant difference in 2000. The option only leads to a slightly better
result. But in 1991 there is a decisive discrepancy. Buying an insurance can
provide a profit of 268, 700 Euro; on the other hand the option allows a profit
of 346, 600 Euro.
Both hedging tools can protect from impact of disadvantageous years. But
the option allows to profit from good years superiorly. The reason for this
effect is that the insurance is more expensive compared to the option. This
reflects in the other operating expenses and income figures. In 2000 the other
operating income is only 95, 400 Euro higher in case of the insurance than in
case of the option. But the operating expenses figure is 125, 700 Euro higher.
Thus in case of the leisure park the rain option is the hedging tool of choice.

5.2 The dam company

The dam company is a public company as usual in Germany. Therefore it
does not have to pay business tax. There are 7 employees. They earn a
salary of 40.000 Euro gross at an average. The average revenues amounts 1.1
million Euro per year.
Information from www.finnentrop.de, www.ruhrverband.de and www.ixx.com
are taken into account.

The insurance policy bought by the dam company holds for the whole
year. It is similar structured as in the case of the leisure park. For every
month with less than 300 mm precipitation per m2 the dam company gets
55, 000 Euro from the insurance company.

In the derivative scenario the dam company buys a put on the same index
(summing up the total amount of precipitation) with strike K = 671.5 and
tick size s = 2, 400 Euro.

5.2.1 Scenario A

If the dam company does not hedge its rain specific risk the P&L looks as
follows:
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Figure 5.6: P&L for the dam in 1991 and 2000, scenario A

One observes that the minimal aim of a public company is not reached
in 1991. The company does not work cost-coveringly. This is undesirable
although there is a high profit for the year in 2000.

5.2.2 Scenario B

Only the other operating income and expenses figures and the profit for the
year are presented in this chapter. Again a more detailed P&L can be found
in the appendix B.

Figure 5.7: P&L cutout for the dam in 1991 and 2000, scenario B

As in case of the leisure park the insurance can provide more stable profits.
Particularly it can preserve from loss in the year 1991.
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5.2.3 Scenario C

Hedging the rain specific risk exposure with an option leads to the following
changed P&L.

Figure 5.8: P&L cutout for the dam in 1991 and 2000, scenario C

Purchasing the rain option also preserves from loss in 1991. But in com-
parison to scenario B the profit in 2000 is higher. Thus as in case of the
leisure park the option holder can profit from fortunate weather years supe-
riorly compared to the insurance buyer.
Eventually the reason is the same as in the case of the leisure park. The cost
performance ratio of the option is better.

Again the rain option proves to be the superior hedging tool.

5.3 Summary

In the previous chapter tools to price rain derivatives were developed and
tested. Independent of the validity of the theoretical results these tools only
get a practical importance if there is a demand for rain derivatives. In this
chapter two companies were presented which depend of rain. It was analysed
how rain options influence their P&Ls. One observed that hedging with rain
options is advantageous for these companies in contrast to the situation of
an open rain specific risk exposure.
Furthermore the option was compared with an insurance against rain. It
turned out that in case of these two companies the rain derivative is the
hedging tool of choice.
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Conclusion

The starting point for this thesis was the question how rain derivatives can
be priced. For that 4 different continuous models have been set up. The first
model describes a simple mean reversion process:

dXt = κ(θ −Xt)dt+ σXp
t dBt.

In reality there are seasonal trends, that is a property which is not covered
by the first model. This problem is resolved by the second model - a mean-
reversion model with deterministic mean:

dXt = dθ(t) + κ(θ(t)−Xt)dt+ σXp
t dBt.

Apart from the seasonality model 1 gives room for improvement. Analysing
historic rain data leads to the impression that there are long terms with
less respectively more rain than the average. The third model takes this
characteristic of rain into account:

dXt = κ(θ −Xt)dt+ σXp
t dB

H
t .

Eventually model 4 combines the refinements

dXt = dθ(t) + κ(θ(t)−Xt)dt+ σXp
t dB

H
t .

Note that model 4 covers the three other models.
Afterwards the parameter estimation has been done. It was possible to

find sensible calibration techniques for all parameters. As there are no market
prices available, the estimators base on historic data.

Different German weather stations have been considered, the developed
models fit with every of them. Hereby the adjustment happens with the
parameter calibration.

68
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As none of the models is analytically solvable the integration is done
numerically. Three schemes have been presented:

• explicit Euler,

• implicit Milstein and

• balanced implicit method.

Hereby the explicit Euler and the balanced implicit method can be applied
to ordinary Brownian motion as well as on fractional Brownian motion. The
Milstein can only be applied on model 1 and 2 but possesses better conver-
gence properties.

The numerical tests show that the different models lead to different prices.
Thus the model refinements make sense. The diffusion parameters influence
the prices strongly. Furthermore it turns out that BIM and Milstein differ in
their treatment of the volatility parameters.

To show the impact of rain derivatives on a company’s performance and
to apply the developed models and techniques two case studies are imple-
mented. The influence on the P&L is analysed. Additionally rain options
are compared to insurance policies. The options proved to be hedging tool
of choice.

This master thesis can only touch on the topic of rain or more generally
weather derivatives. So there are many questions and ideas which could not
be dealt with. Additionally some new arose.

Firstly the assumption of continuouty is made which allows to model rain
quantities. But it is often interesting for a company if it rains or not in a
particular period. That is a task which the developed models cannot fulfill.
Thus it would be useful to develop discrete models maybe basing on risk
theory or insurance mathematics.

The continuous models presented in this thesis can be refined further.
So far they are single-factor-models. One idea is to add a second factor like
stochastic volatility. A combination of different weather events at different
locations in a multi-factor-model could be even more interesting, e. g. to
price a swap depending on sun in Munich and rain in Berlin.

Also one could put more effort in the parameter estimation for example
by using Kalman filters. This topic is not only theoretically interesting but
it is of big importance for praxis as the parameter estimation influences the
prices strongly (see chapter 4).
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The chapter of numerical tests raises the important question of the choice
of the integration scheme. It must be analysed where BIM and Milstein differ
and which scheme map the given processes best.

A probably easier question is the question of applicability of the developed
models to other weather events. At least in the case of temperatures that
should be unproblematic.



APPENDIX A

Ito-calculus

We do not need the whole world of stochastic analysis but some of the re-
sults and ideas of Ito-calculus. We want to get a mathematically sound
understanding of a stochastic differential equation (SDE)

(A.1) dXt = a(t,Xt)dt+ b(t,Xt)dBt

with appropriate functions a and b.
This short introduction or overview bases on [Øks00]. In addition the reader
which is interested in stochastic, is referred to [KS88] and [Tod92]. Within
this thesis it is assumed that the reader has basic knowledge in probability
theory (see for example [Bau92]).

Mathematical preliminaries

Within this subsection the following concepts are repeated:

• Probability space,

• stochastic process,

• filtration,

• adapted,

• martingale.

Definition A.1 Let Ω be a set and A a family of subsets of Ω. A is called
a σ-algebra on Ω if:

• ∅ ∈ A,
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• if A ∈ A =⇒ AC ∈ A,

• if A1, A2, ... ∈ A =⇒
⋃
n≥1

An ∈ A.

If Ω is a given set and A the associated σ-Algebra then (Ω,A) is called a
measurable space.

Let G be a family of subsets of Ω then one denotes the σ-algebra generated
by G with

σ (G) =
⋃
{H : H σ-algebra on Ω,G ⊂ H}

(the smallest σ-algebra containing G).

Definition A.2 Let (Ω,A) be a measurable space. A function P : A →
[0, 1] is a probability measure on (Ω,A) if

• P (∅) = 0, P (Ω) = 1 and

• if A1, A2, ... ∈ A, disjoint =⇒ P

( ⋃
n≥1

An

)
=
∑
n≥1

P (An)

Definition A.3 1. One calls (Ω,A,P) a probability space if (Ω,A) is a
measurable space and P a probability measure. It is called complete if
for all Â ∈ Ω with

P ∗(Â) = inf{P (A) : Â ⊂ A,A ∈ A} = 0

holds that Â ∈ A.

2. Let (Ω,A,P) be a probability space. A function X : Ω → R
n is A-

measurable if
X−1 (U) ∈ A

for all U ∈ Rn, U ∈ B 1.

3. Let (Ω,A,P) be a complete probability space. Then an A-measurable
function X : Ω→ R

n is called random variable.

Definition A.4 A stochastic process is a parameterised collection of ran-
dom variables {Xt}t∈T defined on (Ω,A,P) and taking values in Rn.
(See e. g. [Par72] for more details about stochastic processes.)

1B = σ ({O ⊂ Rn|O offen }) Borel sets
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Sometimes a stochastic processes is written as X(t, w). Hereby one gets
a random variable

w −→ Xt(w)

for every fixed t. The function

t −→ X(t, w)

for fixed w is often called the path of w.
An important example for a stochastic process is the Brownian motion.

Example: A Brownian motion is a function B(t, ω) : [0,∞) × Ω → R

fulfilling the following properties:

1. B(0, w) = 0 a. s.,

2. the function B(t, w) is continuous for fixed w (continuous paths),

3. for 0 = t0 ≤ t1 ≤ ... ≤ tn <∞ the increments of the Brownian motion

B(t1)−B(t0), ..., B(tn)−B(tn−1)

are independently and normally distributed with mean

E (B(tk+1)−B(tk)) = 0

and variance

V (B(tk+1)−B(tk)) = E
(
(B(tk+1)−B(tk))

2) = tk+1 − tk.

Definition A.5 Let Bt(w) be a Brownian motion. Then Ft denotes the
smallest σ-algebra containing all sets

{w : Bt1(w) ∈ F1, ..., Btk(w) ∈ Fk}

where tj ≤ t, Fj ∈ R Borel sets, j ≤ k = 1, 2, .... (We assume that Ft includes
all sets of measure zero.)

Definition A.6 Let (At)t≥0 be an increasing family of σ-algebras on Ω. A
process f(t, w) : [0,∞)× Ω→ R

n is called At-adapted if

w → f(t, w)

is At-measurable for each t ≥ 0.
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Definition A.7 A family M = (Mt)t≥0 of increasing σ-algebras Mt ∈ A,
is called a filtration on (Ω,F).

Definition A.8 A stochastic process (Mt)t≥0 on (Ω,A, P ) is a martingale
with respect to P and a filtration (Mt)t≥0 if

• Mt is Mt-measurable for all t,

• E[|Mt|] <∞ for all t,

• E[Ms|Mt] = Mt for all s ≥ t.

Furthermore a semi-martingale (St)t≥0 is a right continuous stochastic pro-
cess with finite leftside limits which can be presented as

St = S0 + At +Mt

with a process At having bounded variation on compact time intervals and
a local martingale Mt.

Last we denote V = V(S, T ), S ≤ T as the set of all function

f(t, w) : [0,∞)× Ω→ R

such that

• f is B ×A-measurable, B Borel σ-algebra on [0,∞).

• f(t, w) is At-adapted.

• E
(∫ T

S
f(t, w)2dt

)
<∞.

Ito-integral

The conception of an underlying complete probability space is implicitly as-
sumed in this thesis.

Assuming that the expression (A.1) is sound we can (symbolically) inte-
grate and obtain a stochastic integral equation

(A.2) Xt = X0 +

t∫
0

a(s,Xs)ds+

t∫
0

b(s,Xs)dBs.
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Initial value and deterministic integral are well known concepts. We postulate
for a that

(A.3) P

 t∫
0

|a(s, w)|ds <∞

 = 1 and a is Ht-adapted.

The stochastic integral, an integration after a random variable∫
f(t,Xt)dBt

is so far unknown.
Firstly the integral is defined if f is an elementary function. Then this

definition is carried forward to general functions.

Let f ∈ V given by

e(t, w) =
∑
k≥0

αk(w)χ[tk,tk+1)(t)

be an elementary function. As we want f ∈ V it is necessary that αk is
Ftj -measurable. In this case it is natural to define

t∫
s

e(t, w)dBt(w) =
∑
k≥0

αk(w)(Btk+1
(w)−Btk(w)).

Lemma A.9 If h ∈ V , bounded and with continuous paths a. s. there are
elementary functions hn ∈ V such that

E

 t∫
s

(h− hn)2dv

 −→
n−→∞

0

Lemma A.10 If h ∈ V is bounded then there exist bounded functions hn ∈
V with continuous paths a. s. such that

E

 t∫
s

(h− hn)2dv

 −→
n−→∞

0
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Lemma A.11 Let f ∈ V then there exist bounded functions fn ∈ V such
that

E

 t∫
s

(f − fn)2dv

 −→ 0 for n −→∞

Let s = t0 ≤ t1 ≤ ... ≤ tn = t be a partition of [s, t] and h =
max

i=1,...,n−1
|ti+1 − ti|. We define for all functions f ∈ V :

t∫
s

f(v, w)dBv(w) = lim
|h|→0

t∫
s

fi(t, w)dBt(w).

This definition is unique, see [Øks00].

Having this in mind one can interpret the SDE (A.1) as the symbolical
notation for

(A.4) Xt = X0 +

t∫
0

a(s,Xs)ds+

t∫
0

b(s,Xs)dBs

with b ∈ V , a as in (A.3). Such a process is called Ito-process or stochastic
integral.

Later on the following calculation rules will be useful:

(A.5) dt · dt = dt · dBt = dBt · dt = 0 and dBt · dBt = dt.

It easily follows that dθ(t) ·dθ(t) = dθ(t) ·dBt = 0 for a deterministic function
θ : R→ R.

One of the most important results in Ito calculus is the Ito theorem (or
Ito-formula). It particularly holds for Brownian motion, but in fact it holds
for all semi-martingales Wt (see for example [DHPD00]).

Theorem A.12 Let

Xt = Xt0 +

t∫
0

a(s,Xs)ds+

t∫
0

b(s,Xs)dWs
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be an Ito-process with X0 = x0. Let f(t, x) ∈ C1,2([0,∞) × R). Then
Yt = f(t,Xt) is again an Ito-process and it holds

df(t,Xt) =
∂f(t,Xt)

∂t
dt+

∂f(t,Xt)

∂x
dXt +

1

2

∂2f(t,Xt)

∂x2
(dXt)

2.



APPENDIX B

Profit and loss accounts

Within the case study in chapter 5 two companies strongly exposed two rain
risk have been considered. Three scenarios have been set up. In scenario
A there is no hedging. In B the companies hedge with an insurance policy.
Lastly the hedging happens with a rain option (scenario C). Two possible
rain distributions have been assumed. That is on the one hand the year 1991,
and on the other hand 2000.

The different scenarios in the two years are compared by analysing their
impact on the profit and loss accounts. The P&L are computed monthly.
But in chapter 5 only the totals, sometimes even only cutouts of the totals
are presented. In the appendix the interested reader can find the monthly
P&L, firstly the leisure park is considered. Afterwards the P&L of the dam
company are presented.

78
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