
Bergische Universität Wuppertal

Fachbereich Mathematik und Naturwissenschaften

Lehrstuhl für Angewandte Mathematik
und Numerische Mathematik

Preprint BUW-AMNA 09/02

Patrick Deuß

Measuring the Value at Risk of a Stock Portfolio
The Copula Approach

Working Paper

January 2009

http://www-num.math.uni-wuppertal.de/



Contents

1 Introduction 1

2 The Standard Correlation Approach (COR) 1
2.1 Data Fitting - Stock Prices . . . . . . . . . . . . . . . . . . . . . 2
2.2 The Multidimensional Model . . . . . . . . . . . . . . . . . . . . 2

2.2.1 A Guide to Implementation . . . . . . . . . . . . . . . . . 3
2.2.2 The Continuous-Time Setup . . . . . . . . . . . . . . . . 4

2.3 Basing Upon and Forecasting a Period . . . . . . . . . . . . . . . 5
2.4 Monte Carlo Simulation - Part I . . . . . . . . . . . . . . . . . . 6

3 The Copula Approach (COP) 7
3.1 Multivariate Distributions . . . . . . . . . . . . . . . . . . . . . . 7
3.2 About Empirical Distribution Functions and Ranks . . . . . . . . 8
3.3 Structure and Simulation of Standard Copulas . . . . . . . . . . 9

3.3.1 The Gaussian Copula . . . . . . . . . . . . . . . . . . . . 10
3.3.2 The t-Copula . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Fitting Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.1 Calibrating the Gaussian Copula . . . . . . . . . . . . . . 15
3.4.2 Calibrating the t-copula . . . . . . . . . . . . . . . . . . . 16

3.5 Monte Carlo Simulation - Part II . . . . . . . . . . . . . . . . . . 16

4 Controlling the Risk 19
4.1 Value at Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.4 Backtesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.5 Goodness-of-Fit Test . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusion 22

List of Figures

3.1 Allianz AG, N = 60 log-returns from 18/10/07 to 16/01/08 . . . 8
3.2 Gaussian copula with correlation ρ = 0, 5 . . . . . . . . . . . . . 11
3.3 t-copula with correlation ρ = 0, 5 and ν = 3 degrees of freedom . 13
4.1 VaR compared to portfolio returns . . . . . . . . . . . . . . . . . 21
4.2 quantile-quantile-plots for the goodness-of-fit test . . . . . . . . . 21

i



1

1 Introduction

As the title indicates, the aim of this paper is to determine the value at risk of
a stock portfolio. We will present two approaches to solve this challenge: the
standard correlation approach (COR) and the copula approach (COP). We want
to show the short-coming of COR concerning the mapping of multivariate de-
pendency structures. This problem makes COR underestimating the portfolio
risk whereas COP overcomes this obstacle.

This text is meant to be as a guide to implement the above mentioned ap-
proaches. It lacks mathematical finesse and profoundness to keep it as readable
as possible. For the pure-maths background we refer to the bibliography.

The paper is organised as follows: in chapter 2 and 3 we describe COR and
COP as well as their implementation. Chapter 4 outlines the handling with
the operating figure of the value at risk, applies the two approaches to a stock
portfolio and depicts numerical results. We finish with a conclusion.

2 The Standard Correlation Approach (COR)

In our model setup we assume that our stock portfolio comprises I assets and
each stock price Si

t, i = 1, . . . , I, evolves according to the following stochastic
differential equation

dSi
t = µi(St, t)dt + σi(St, t)dW i

t for t ∈ [0, T ] and T < ∞

in which µi and σi are technical adequate functions (e.g. integrable) and W i
t is

a Brownian motion for i = 1, . . . , I.

Note that Si
t is driven by just one Brownian motion. We come to that later

when we deal with the whole portfolio.

Although we know that stock price returns deviate from the (log-)normal dis-
tribution (such returns often have heavy-tailed distributions as many empirical
analysis show), we believe that the incorporated risk of a stock portfolio can
be grasped via its dependence structure and its marginal distributions (i.e. the
copula) and not solely through the stock price model.

That’s why we choose a tractable model and regard the functions µi(St, t) and
σi(St, t) as constant. This leads to the following, log-normal distributed stock
price model and its solution.









dSi
t = µiS

i
tdt + σiS

i
tdW i

t with initial condition Si
0 for i = 1, . . . , I

Si
t = Si

0 exp







(µi −
1

2
σ2

i )
︸ ︷︷ ︸

:=αi

t + σiW
i
t







⇔ ln
(

Si
t

Si
0

)

= αit + σiW
i
t









(2.1)
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We denote αi as the mean or expected rate of return and σi as the standard

deviation of asset i, i = 1, . . . , I.

2.1 Data Fitting - Stock Prices

Suppose we have N+1 observed closing prices Si
t , i = 1, . . . , I and t = 1, . . . , N+

1. As we deal with a log-normal model (2.1), we have to take the logarithm of
these prices:

γi(t) := ln

(
Si

t

Si
t−1

)

See that we have now N observed daily log-returns γi(t) and we remember that

E

[

ln

(
Si

t

Si
0

)]

= αit or E

[

ln

(
Si

t

Si
t−1

)]

= αi

due to the properties of the Brownian motion. In order to estimate the expected
rate of return γi we have compute the expression

γi :=
1

N

N∑

n=1

γi(n)

We set γ = (γ1, . . . , γI)
t. Moreover, we calculate the variance η2

i of asset i.

η2
i :=

1

N − 1

N∑

n=1

(γi(n) − γi)
2 for i = 1, . . . , I

Thus, setting αi = γi and σi = +
√

η2
i we have fitted model (2.1):

Si
t = Si

0 exp
(
αit + σiW

i
t

)
(2.2)

2.2 The Multidimensional Model

However, we want to set up a multidimensional model. Let’s denote

i) St := (S1
t , . . . , SI

t )t

ii) α := (α1, . . . , αI)
t

iii) Wt := (W 1
t , . . . , W I

t )t

iv) D := diag(σ1, . . . , σI).

Note that each stock price is driven by one Brownian motion which leads to
the vector Wt = (W 1

t , . . . , W I
t )t. It is also possible to model one stock price by

means of several Brownian motions. We omit this case here.
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With this notation we are able to write (2.1) or (2.2), respectively, in the fol-
lowing multidimensional form

St = S0 exp (αt + DWt)

=






S1
0
...

SI
0




 · exp











α1

...
αI




 · t +






σ1 0
. . .

0 σI




 ·






W 1
t
...

W I
t









 (2.3)

In order to simplify the implementation of the model (2.3) the Brownian motions
W i

t , i = 1, . . . , I, should be drawn independently. The problem is that the
observation of the data set might reveal a certain correlation between the price
behaviour of our assets. Hence, the Brownian motions have to be connected
to each other according to a possibly arisen linear dependence structure. It is
consequently not sufficient to model the randomness of the stock price behaviour
via the expression D · Wt.

We determine the covariance matrix Σ of the observation matrix

Γ := (γi,n) = γi(n) with i = 1, . . . , I and n = 1, . . . , N.

The i, j-th entry of Σ ∈ R
I×I is the covariance between asset i and asset j,

the diagonal elements are the variances of each asset. Our aim is now to gener-
ate random variables which are multivariate-normal distributed with the very
covariance matrix Σ. Let’s have a closer look at Σ.

Σ =






ρ1,1 · σ1 · σ1 . . . ρ1,I · σ1 · σI

...
. . .

...
ρI,1 · σI · σ1 · · · ρI,I · σI · σI






=






σ1 0
. . .

0 σI











1 ρ(i, j)
. . .

ρ(j, i) 1











σ1 0
. . .

0 σI






= D · P · D

The matrix P denotes the correlation matrix and ρ(i, j) indicates the correlation
between security i and j. P and Σ are symmetric by nature and they are positive
definite as a rule.

It is known, that the expression Σ · Wt = DPD · Wt is not multivariate-normal
distributed, i.e. Σ · Wt ≁ N(0,Σt). To eliminate this problem we initially
consider the I-dimensional Brownian motion Wt.

2.2.1 A Guide to Implementation

As implementation always means to discretise things, we regard the time horizon
[0, T ], T < ∞, divide it into M sub-intervals of the length ∆t, i.e. ∆t = T

M and
denote the discretized time steps tm := m∆t, m = 1, . . . , M .

Furthermore, we know that the increments of a Brownian motion Z∆t = Wtm
−

Wtm−1
, m = 1, . . . , M , are N(0,∆t)-distributed and we thus consider the I-

dimensional random variable Z = (Z1, . . . , ZI)
t for each time step tm, where we
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skip the index for the sake of readability. Note that the Zi, i = 1, . . . , I, are
drawn independently.

If we now scale a standard normal-distributed random variable Y with the
standard deviation

√
∆t of Z, we receive the very variate Z =

√
∆t · Y , Y ∼

N(0,1).

However, the expression
√

∆t ·Σ ·Y is still not multivariate-normal distributed.
We have to revise the matrix Σ.

As it can be found in many textbooks on numerics and / or generation of
multivariate random variables, we compute the Cholesky decomposition L of Σ
(possible as xtΣx > 0 for x 6= 0):

Σ = LLt

in which L is a lower triangular matrix.

Please note that we are also able to use the correlation matrix P for the Cholesky
decomposition. We just have to add the diagonal matrices D:

P = L̃L̃t ⇒ Σ = DPD = DL̃L̃tD = DL̃L̃tDt = DL̃(DL̃)t = LLt

Together with the random variable Y ∼ N(0,1), the matrix L creates

L · Y ∼ N(0,Σ).

Putting these considerations together, we receive

V := α∆t +
√

∆t · L · Y ∼ N(α∆t,Σ∆t).

Thus, V is the random variable we searched for and which constitutes linear
dependence among our traded securities.

Stm
= Stm−1

exp (V ) = Stm−1
exp

(

α∆t +
√

∆t · L · Y
)

(2.4)

Expression (2.4) can now easily be implemented for each time step tm, m =
1, . . . , M . Notice that in each step one has to draw I independent standard
normal variables Yi, i = 1, . . . , I. Of course, if we set ∆t = T , we receive
directly the simulated final quotation ST .

Some MATLAB functions will simplify the implementation. The calculation of
γ for instance is solved by the command mean(Γ, 2). Moreover, mvnrnd(α, Σ,
M) creates M N(α,Σ)-distributed random variables. Hence, we don’t have to
perform a Cholesky decomposition of Σ, the covariance matrix of Γ.

2.2.2 The Continuous-Time Setup

This section is included for the sake of completeness and just specifies the mul-
tidimensional stock price evolutions incorporating the linear dependence struc-
ture.

As Wt ∼ N(0, t) and hence Ṽ := αt + L ·Wt ∼ N(αt,Σt), the continuous-time
setup (2.3) changes to

St = S0 exp (αt + L · Wt) (2.5)
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2.3 Basing Upon and Forecasting a Period

We are endowed with the mean rate of return α and the covariance matrix
Σ. Hence, we have fitted model (2.4). See that we estimated α and Σ on
daytime basis. Implementing this setup for m = 1 means that we forecast the
performance of our portfolio for the next day. Thus, calculating m = 1, . . . , M
steps the price behaviour for M days is simulated.

Suppose now that we want to do the forecasting for several days k = 1, . . . , K,
for K < N . E.g., K = 5 would be a trading week, K = 10 two weeks and
K = 20 symbolises a month. We are interested in howfar the portfolio evolves
during this period. On the one hand this can be done in the above mentioned
way in setting m = k. On the other hand we can adapt the fitting which has
the advantage to reduce complexity.

Assume that K ≪ N , i.e. the regarded period K is much smaller than the
observed data N . For simplicity reasons we claim that N mod K ≡ 0. Other-
wise, some daily data has to be skipped. We are interested in fitting the model
to a period of K trading days.

Consequently, we change estimations in the following way: we sum up the log-
returns for each K trading days

γi,k =

K∑

n=1

γi(k · K + n) for k = 0, 1, 2, . . . ,
N − 1

K

and compute the mean with the abbreviation ξ(K) := N−1
K

γK
i =

1

ξ(K)

ξ(K)
∑

k=0

γi,k

and denote
γK := (γK

1 , . . . , γK
I )t and αK := γK .

The covariance matrix ΣK is calculated from the observation matrix ΓK = γi,k,
i = 1, . . . , I and k = 0, 1, . . . , ξ(K).

Digression

As we have

γi,k =

K∑

n=1

γi(k · K + n) = γi(k · K) + . . . + γi((k + 1) · K)

= ln

(

Si
kK

Si
kK−1

)

+ ln

(

Si
kK+1

Si
kK

)

+ . . . + ln

(
Si

(k+1)K

Si
(k+1)K−1

)

= ln

(
Si

(k+1)K

Si
kK−1

)

we can also deal with the raw data and just calculate the log-returns of every
period of K trading days. We leave this decision to the reader. In our point of
view it is easier to implement the above mentioned procedure.

Of course, it might be strange to some readers why we fit the setup to K trading
days instead of the normally used one-year period. We will see later that we
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are interested in forecasting a certain time period of K = 1, 5, 10 or 20 trading
days. Fitted to this very period, simulations will allow us to use a normalised
time step of ∆t = 1. This implementation will provide the inherited risk (value
at risk) of the portfolio.

2.4 Monte Carlo Simulation - Part I

Suppose we regard a period of K trading days. For the sake of simplicity we set
the initial values Si

0 := 1, i = 1, . . . , I, and assume that all assets in our I stock
portfolio are equally weighted. Calibrating setup (2.4) by means of historical
data provides us with the expressions αK and ΣK . As these terms are fitted on
basis of a K-trading-days-period and we want to simulate the next time step
(i.e. the next K trading days), it yields ∆t = 1.

In the continuous-time model (2.5) this fact leads to

S1 = S0 exp(αK + LK · W1)

which is in this case equal to the implementation presetting (2.3)

St1 = St0 exp(αK + LK · Y ).

In other words, for forecasting the next period we have to produce N(αK,ΣK)-
distributed random variables and put it into the exponential function.

Now, we would like to perform R Monte Carlo simulations, i.e. we estimate the
outcome (this is the expected return) for the next K trading days by simulating
the return of our portfolio R times and calculating the mean.

First, as mentioned in subsection 2.2.1 the expression

y = mvnrnd(αK, ΣK, R)

produces a R × I matrix y which entries are N(αK,ΣK)-distributed.

Thus, the expected stock price Ŝi
r, i = 1, . . . , I and r = 1, . . . , R, of the i-th

asset and the r-th simulation run is therefore

Ŝi
r = Si

0
︸︷︷︸

=1

exp(yr,i).

Summing up the columns of Ŝi
r gives us the expected return for the next period

of K trading days of the r-th simulation run (remember that all stocks are
equally weighted).

Ŝr =
1

I

I∑

i=1

Ŝi
r for r = 1, . . . , R

We summarise the R different Monte Carlo outcomes:

Ŝ =
1

R

R∑

r=1

Ŝr (2.6)
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Ŝ is hence the simulated or expected portfolio return for the next K trading
days.

Remark - K ≪ N

One notes that K should be much smaller than N to hold a certain consistency
as the data is divided into N

K sets.

3 The Copula Approach (COP)

In the previous chapter we examined expected stock price behaviour in the Mer-
ton setup (2.1). When we modelled the multidimensional case (equation (2.5))
we took into account that stock prices are correlated, i.e. that they are linear de-
pendent. But considering multidimensional returns there might occur different
dependencies which are possibly not grasped via this model.

3.1 Multivariate Distributions

For a multivariate distribution function F the important theorem of Sklar (1959)
shows that this distribution F can be separated into its marginal distribution
functions Fi, i = 1, . . . , I, often called margins and their dependency structure,
the copula function C.

3.1 Theorem (Sklar)
Let F be a continuous multivariate distribution and F1, . . . , FI continuous mar-
gins. Then, there exists a unique, I-dimensional copula function C which holds
the following equivalent equations

F (z1, . . . , zI) = C(F1(z1), . . . , FI(zI)) (3.1)

F (F−1
1 (v1), . . . , F

−1
I (vI)) = C(v1, . . . , vI) (3.2)

in which zi ∈ R, vi ∈ [0, 1], vi = F−1
i (zi), i = 1, . . . , I, and F−1

i is the inverse
function of the marginal distribution Fi.

For further details see the excellent text book of Nelsen [7].

The Problem

Every investor holding a stock portfolio is exposed to the market risk of asset
prices and wants to estimate it. The question might arise whether extreme
outcomes of a single asset will have significant influence on the whole portfolio.
If yes, can this dependence be modelled via the linear correlation? Or, in other
words, is the stock price setup able to capture the actual risk structure? We do
not think so.

As we see in equation (3.1) we need the marginal distribution functions Fi,
i = 1, . . . , I. In our case it is nothing else than the distribution functions of the
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log-returns of every single asset in the portfolio. There are several different ways
of estimating and / or fitting these marginals. An example for a parametric ap-
proach would be the maximum likelihood estimator. We restrict our analysis to
the empirical distribution function. This is often called non-parametric estima-

tion and only possible if the data set is very substantial which will be fact for
our data.

3.2 About Empirical Distribution Functions and Ranks

We denote xi,n as the n-th log-return of the i-th asset. Consistent with the
former notation it is i = 1, . . . , I and n = 1, . . . , N and we get the following
observation matrix :

X =






x1,1 . . . x1,N

...
. . .

...
xI,1 . . . xI,N






3.2 Definition (Empirical Distribution Function)
The empirical distribution function of asset i is defined as

Fi,N (x) :=
1

N + 1

N∑

n=1

1{xi,n≤x}(x) (3.3)

The factor 1
N+1 effects that Fi,N ∈ [0, 1). Evaluations of distribution functions

at the boundary 1 might cause problems. That’s why we keep the distribution
function artificially smaller than 1.

−0.025 −0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02 0.025
0

0.1
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0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log−return

F
A

lli
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z,
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(x
)

empirical distribution function Allianz AG

Figure 3.1: Allianz AG, N = 60 log-returns from 18/10/07 to 16/01/08

Figure 3.1 shows the empirical distribution function for Allianz AG obtained by
an analysis of N = 60 log-returns from 18 October 2007 to 16 January 2008.



3.3 Structure and Simulation of Standard Copulas 9

Instead of implementing equation (3.3) it is equivalent to compute the ranks of
our observation data and divide them by N + 1. We just have to sort the rows
of matrix X , i.e. we find

rank(xi·)

N + 1
, Fi,N (xi·)

which simplifies the implementation and saves computing time.

Implementation in MATLAB - computing ranks

i) temp1 = [x(i, :)′ (1 : N)′];

ii) temp2 = sortrows(temp1, 1),

iii) temp3 = [temp2 (1 : N)′./(N + 1)];

iv) temp4 = sortrows(temp3, 2);

v) rank(i,:) = temp4(:, 3);

In the first step we set a marker for remembering the original position of each
xi,n, i = 1, . . . , I and n = 1, . . . , N . Step ii) sorts the xi,n according to their
values. Step iii) adds the probabilities (1 : N)′./(N + 1) (→ empirical distribu-
tion function). Step iv) sets everything back to its original order with help of
the indicator step i). In the last step we read out the ranks for every xi,n.

With the aid of this algorithm we compute the following matrix:

U =






F1,N (x1,1) . . . F1,N (x1,N )
...

. . .
...

FI,N (xI,1) . . . FI,N (xI,N )






=






rank(x1,1) . . . rank(x1,N )
...

. . .
...

rank(xI,1) . . . rank(xI,N )




 =






u1,1 . . . u1,N

...
. . .

...
uI,1 . . . uI,N






It holds ui,n ∈ [0, 1). The matrix and its entries are often called pseudo-

observations.

3.3 Structure and Simulation of Standard Copulas

By Sklar’s Theorem 3.1 we know the following representation for a multivariate
distribution function F

C(F1(z1), . . . , FI(zI)) = F (z1, . . . , zI)

We have already determined the marginal distribution functions Fi, i = 1, . . . , I,
for each asset - these are the empirical distribution functions Fi,N which we will
make use of later. So, we have to try out in howfar they are connected to each
other. We need to specify the multivariate distribution function F . Suppose
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the margins are continuous. Then, by inverting the margins (F−1
i , i = 1, . . . , I),

the dependence structure (i.e. the copula) is revealed.

Fi(zi) := vi ⇒ F−1
i (vi) = zi

⇒ C(v1, . . . , vI) = F (F−1
1 (v1), . . . , F

−1
I (vI))

The vector v = (v1, . . . , vI)
t with such a representation is distributed according

to copula C.

However, we would like to simulate this very vector v = (v1, . . . , vI)
t which is

distributed according to a copula C. To do this we have to reverse the order
of our approach. First, we simulate random variables which are distributed
according to the multivariate distribution function F and get a vector z =
(z1, . . . , zI)

t. Now, we apply the margins Fi to each component of z and receive

(F1(z1), . . . , FI(zI))
t = (v1, . . . , vI)

t = v.

By the representation of Sklar we know that v is distributed according to the
copula C. This copula C has to be defined by the risk manager. She or he
determines the dependency structure, the company wants to implement. In
the next two subsections we present those copulas which are frequently used in
financial risk application and we want to deal with.

3.3.1 The Gaussian Copula

For setting up the Gaussian copula we have to choose F−1
i = φ−1 the stan-

dard normal distribution function. A standard distribution function is a dis-
tribution function with mean zero and variance one. Moreover, applying
F = ΦI(0, P ) := ΦI

P the I-dimensional standard normal distribution function
with mean 0 and correlation matrix P we receive the Gaussian copula.

CGa
P (v1, . . . , vI) = ΦI

P (φ−1(v1), . . . , φ
−1(vI)) (3.4)

=

Φ−1(v1)∫

−∞

. . .

Φ−1(vI )∫

−∞

1

(2π)I/2|P |1/2
exp

(

−1

2
ztP−1z

)

dz1 . . . dzI

in which |P | is the determinant of P .

Please note that in case of P = 1I - the identity matrix - we get the independence

or product copula

C(v1, . . . , vI) =

I∏

i=1

vi

which represents a complete independence of each component.

Due to some computation one obtains the density of the Gaussian copula

cGa
P (v1, . . . , vI) = |P |− 1

2 exp

(

−1

2
zt
(
P−1 − 1I

)
z

)

dx1 . . . dxI

in which z = (z1, . . . , zI)
t = (φ−1(v1), . . . , φ

−1(vI)
t)t.
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Figure 3.2: Gaussian copula with correlation ρ = 0, 5

To get an idea about this equation and the behaviour of the Gaussian copula
we specify distribution and density function as well as 2000 simulated points

of the 2-dimensional Gaussian copula with correlation matrix P =

(
1 0.5

0.5 1

)

.

These properties are shown in figure 3.2.

For the simulation of a vector v which is distributed according to the Gaussian
copula as in subfigure 3.2d we have the following algorithm.

3.3 Algorithm (Simulation of the Gaussian copula)
i) Generate Z ∼ ΦI(0, P ) and receive z = (z1, . . . , zI)

t.

ii) Apply φ (standard normal distribution function) to each component of z
and receive v = (v1, . . . , vI)

t = (φ(z1), . . . , φ(zI))
t.

iii) v is distributed according to CGa
P .

Further explanations and comments on algorithm 3.3 can be found in McNeil
et al. [1] and references therein.
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3.3.2 The t-Copula

As well as the Gaussian copula the Student t-copula or just t-copula belongs
to the family of elliptical copula functions which are often used in financial
application due to their analytical tractability.

Compared to the Gaussian one, the t-copula has one additional parameter - ν the
degrees of freedom. This problem will challenge us later, see section 3.4 Fitting
Copulas. The margins of this copula are the univariate standard t-distributions,
i.e. F−1

i := t−1
ν with ν indicating the degrees of freedom. Moreover, the multi-

dimensional structure is given by the multivariate standard t-distribution with
mean 0 and correlation matrix P , F := tIν(0, P ) := tIν,P .

Ct
ν,P (v1, . . . , vI) = tIν,P

(
t−1
ν (v1), . . . , t

−1
ν (vI)

)
(3.5)

=

t−1
ν (v1)∫

−∞

. . .

t−1
ν (vI )∫

−∞

Γ
(

ν+I
2

)

Γ
(

ν
2

)√

(νπ)I |P |

(

1 +
ztP−1z

ν

) ν+I
2

dz1 . . . dzI

in which Γ denotes the usual Gamma function.

One small note: the t-copula converges to the Gaussian for ν → ∞. The density
for (3.5) is given by

ct
P (v1, . . . , vI) = |P |− 1

2

(

Γ
(

ν+I
2

)

Γ
(

ν
2

)

)[

Γ
(

ν
2

)

Γ
(

ν+1
2

)

]I
(

1 + ztP−1z
ν

)− ν+I

2

I∏

i=1

(

1 +
z2

i

ν

)− ν+1

2

in which z = (z1, . . . , zI)
t = (t−1

ν (v1), . . . , t
−1
ν (vI)

t)t.

As we did for the Gaussian copula we visualise some basic properties of the
bivariate t-copula in figure 3.3. Again, we have chosen ρ = 0, 5, i.e. P =
(

1 0, 5
0, 5 1

)

and set ν = 3.

Similar to the simulation of v ∼ CGa
P , we present an algorithm simulating a

vector which are distributed according to the t-copula.

3.4 Algorithm (Simulation of the t-copula)
i) Generate Z ∼ tIν,P and receive z = (z1, . . . , zI)

t.

ii) Apply tν (standard univariate t-distribution function) to each component
of z and receive v = (v1, . . . , vI)

t = (tν(z1), . . . , tν(zI))
t.

iii) v is distributed according to Ct
ν,P .

Here too, compare McNeil et al. [1] and references therein. From the simulation
of copulas we turn to their calibration.

3.4 Fitting Copulas

In this section we want to present an outline for the problem of how to calibrate
copula functions. We will apply the so-called pseudo-loglikelihood estimation,
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Figure 3.3: t-copula with correlation ρ = 0, 5 and ν = 3 degrees of freedom
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an approach which in our opinion fits best for our model setup.

As seen, copulas contain certain parameters. Therefore, we rewrite equation (3.1)
to indicate the parametric dependence of the copula.

F (z1, . . . , zI , θ1, . . . , θI , θ) = C(F1(z1, θ1), . . . , FI(zI , θi), θ) (3.6)

We see that on the one hand every margin Fi includes the parameters θi =
(θ1

i , θ2
i , . . .) depending on the structure of Fi itself. On the other hand the

copula embodies the parameters θ = (θ1, θ2, . . .) which is as well up to the
choice of the copula C.

3.5 Example (Parameters of the Gaussian Copula)

CGa
P (v1, . . . , vI) = ΦI

P (φ−1
µ1,σ1

(v1), . . . , φ
−1
µI ,σI

(vI))

i) As Fi = Φ(µi, σi) is chosen as univariate normal distribution function,
the margins of the Gaussian copula contain the means µi and the standard
deviation σi, i = 1, . . . , I. If, of course, Fi is given as the standard univariate
distribution function, the parameters are zero and one (mean and variance)
a priori.

ii) Moreover, as F = ΦI
P holds for the Gaussian copula, we see that the copula

parameter θ is the to be estimated correlation matrix P . Remember that
the coherence of the covariance matrix Σ and the correlation matrix is
shown in subsection 2.2.1. Additionally, if one wants the Gaussian copula
not be centred, the mean vector µ increases the parameter family to θ =
(µ, Σ). We restrict to the standard case, i.e. we only need to estimate the
correlation matrix P .

iii) All in all, we have to fit and optimise on the basis of I(I−1)
2 variables in the

standard case.

The calibration of these parameters is done by maximisation of the log-likelihood
function for the copula model (3.6)

l(θ1, . . . , θI , θ, x) =
N∑

n=1

ln c(F1(x1,n, θ1), . . . , FI(xI,n, θI), θ) ·
I∏

i=1

fi(xi,n, θi)

︸ ︷︷ ︸

=:η

in which c

c(v1, . . . , vI , θ) =
∂dC(v1, . . . , vI , θ)

∂v1 · · · ∂vI

is the density of copula C and fi, i = 1, . . . , I, are the marginal densities of
the distribution functions Fi. See that the term η is the density of the copula
model (3.6). For more information we refer to Dias [6] and Tappe [2].

However, we have already determined the empirical distribution functions Fi,N

and the pseudo-observation matrix U . This means we are able to skip the
margin parameters (θ1, . . . , θI) as they are implied in the empirical distribution
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functions - the Fi,N , i = 1, . . . , I, do not depend on parameters. Thus, we have
to maximise the so-called pseudo log-likelihood function

l̂(θ, x) =

N∑

n=1

ln c(F1,N (x1,n), . . . , FI,N (xI,n), θ)

Summarised, we are searching for

θ∗ = arg max
θ∈Θ

N∑

n=1

ln c(u1,n, . . . , uI,n, θ)

in which Θ indicates the admissible set of model parameters. For a detailed
prescription concerning log-likehood estimators and calibrating issues compare
e.g. Dias [6].

3.4.1 Calibrating the Gaussian Copula

In case of the Gaussian copula the remaining parameter to fit is the correlation
matrix P . McNeil et al. [1] (compare example 5.53) showed how to find the
maximum likelihood estimator (MLE) for that problem. It turns out to be
sufficient to transform the pseudo observation matrix U by means of the inverse
function of the standard univariate distribution Φ−1, i.e.

Φ−1(U) =






Φ−1(u1,1) . . . Φ−1(u1,N )
...

. . .
...

Φ−1(uI,1) . . . Φ−1(uI,N)






Then take the correlation of this matrix

P̂ = ρ(Φ−1(U))

which is the searched MLE for the Gaussian copula. Now, we are able to apply
algorithm 3.3 to simulate random variables distributed according to CGa

P̂
.

3.6 Algorithm (Calibration of the Gaussian Copula)
i) Determine the empirical distribution functions Fi,N , i = 1, . . . , I.

ii) Apply Fi,N to the log-return data matrix X and receive the observation
matrix U .

iii) Transform matrix U by means of the inverse of the standard normal distri-
bution Φ−1(U).

iv) Compute the correlation matrix P̂ ∈ [−1, 1]I×I of matrix Φ−1(U).

As we have calibrated the copula, we have set up a model. Hence, we are ready
to apply algorithm 3.3 to simulate random variables distributed according the
Gaussian copula.
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3.4.2 Calibrating the t-copula

Regarding the t-copula we see that besides the correlation matrix P we have to
fit one additional parameter, ν the degrees of freedom. McNeil et al. [1] propose
to calibrate the correlation matrix P̂ by means of Kendall’s tau and the degrees
of freedom by means of the pseudo log-likelihood estimation, see examples 5.54
and 5.59 and compare Tappe [2].

First, we determine the rank correlation (i.e. Kendall’s tau) of matrix U and
transform this matrix τ(U) ∈ R

I×I :

P̂ = sin

(
πτ(U)

2

)

to get the estimated correlation matrix P̂ . Now, the pseudo log-likelihood func-
tion l̂ only depends on the degrees of freedom ν. A maximisation can be effected
numerically.

3.7 Algorithm (Calibration of the t-copula)
i) Determine the empirical distribution functions Fi,N , i = 1, . . . , I.

ii) Apply Fi,N to the log-return data matrix X and receive the observation
matrix U .

iii) Calculate τ(U), Kendall’s rank correlation coefficients.

iv) Transform P̂ = sin
(

πτ(U)
2

)

to receive the estimated correlation matrix.

v) Maximise the log-likelihood function l̂(ν, P̂ , U) with respect to ν numeri-
cally.

Again, we are able to simulate the fitted t-copula according to algorithm 3.4.
For a workaround of this section we refer to McNeil et al. [1], Dias [6] and
Tappe [2].

3.5 Monte Carlo Simulation - Part II

By now, we know how to calibrate as well as to simulate the Gaussian and the
Student t-copula. As in section 2.4 we would like to analyse a period of K
trading days, i.e. we want to know - or better simulate - how our stock portfolio
evolves in the next period.

We remember the observation matrix X in which the entries xi,n, i = 1, . . . , I
and n = 1, . . . , N , denote the n-th daily log-return of asset i. Again for sim-
plicity reason we assume that N mod K = 0 and define δK := N

K ∈ N, i.e. we
receive a shortened observation matrix

XK =






x1,1 . . . x1,δK

...
. . .

...
xI,1 . . . xI,δK




 ∈ R

I×δK

= (xi,n) with i = 1, . . . , I and n = 1, . . . , δK .
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Consequently, the pseudo-observation matrix U changes to

UK =






F1,δK (x1,1) . . . F1,δK (x1,δK )
...

. . .
...

FI,δK (xI,δK ) . . . FI,δK (xI,δK )




 =






u1,1 . . . u1,δK

...
. . .

...
uI,1 . . . uI,δK






Please mind that the empirical distribution functions Fi,N have to be revised
to Fi,δK , i = 1, . . . , I, and remember that it must hold N ≫ K to have enough
data.

Algorithm 3.6 for the Gaussian and algorithm 3.7 for the t-copula are applied to
this new data setup to calibrate both copulas. Algorithm 3.3 and algorithm 3.4
simulate vectors v = (v1, . . . , vI) ∈ [0, 1]I distributed according to the Gaussian
and t-copula, respectively.

To receive a simulated outcome for our portfolio we have to invert the empirical
distribution functions Fi,δK and apply F−1

i,δK to vector v. Keep in mind that it
holds

F−1
i,δK (ui,n) = (xi,n) for i = 1, . . . , I and n = 1, . . . , δK .

This yields the following problem: the inverse empirical distribution function is
(of course) not continuous. Thus, the simulated entries vi of v will not match
the entries ui,n of U , i = 1, . . . , I and n = 1, . . . , δK .

If δK is big enough (what we assumed), Fi,δK is almost like being continuous
and we can find an entry ui,n∗

i
≈ vi. We think that the error is neglectable. If

an interpolation yields a better result can be researched.

In fact we are searching for the index n∗
i ∈ {1, . . . , δK} which holds

min
n∈{1,...,δK}

|ui,n − vi| = n∗
i for i = 1, . . . , I.

Now, we change vector v = (v1, . . . , vI)
t to vector u∗ = (u1,n∗

1
, . . . , uI,n∗

I
)t which

can be transformed by means of F−1
i,δK

F−1
i,δK (ui,n∗

i
) = (xi,n∗

i
) for i = 1, . . . , I

and we receive
x∗ = (x1,n∗

1
, . . . , xI,n∗

I
)t

The vector x∗ contains the “simulated” log-returns xi,n∗

i
for each asset i, i =

1, . . . , I, for the next period, i.e. the next K trading days.

To get the return of our portfolio (assuming that Si
0 = 1 and that the portfolio

is equally weighted) we compute

λK =
1

I

I∑

i=1

Si
0 exp(xi,n∗

i
) =

1

I

I∑

i=1

exp(xi,n∗

i
).
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For a Monte Carlo simulation the above described procedure has to be repeated,
say, R times. Naturally, it is sufficient to calibrate the copula only once. This
changes the formulation as follows. Algorithms 3.3 and 3.4 have to be rerun R
times which generates a matrix V ∈ [0, 1]I×R

V =






v1,1 . . . v1,R

...
. . .

...
vI,1 . . . vI,R




 = (vi,r) with i = 1, . . . , I and r = 1, . . . , R.

Searching the index is expanded to

min
n∈{1,...,δK}

|ui,n − vi,r| = n∗
i for i = 1, . . . , I and r = 1, . . . , R (3.7)

and creates a matrix U∗

U∗ =






u1,n∗

1
. . . u1,n∗

R

...
. . .

...
uI,n∗

1
. . . uI,n∗

R




 = (ui,n∗

r
) with i = 1, . . . , I and r = 1, . . . , R.

The transformation by means of the inverse function of the empirical distribu-
tion function yields

X∗ =






x1,n∗

1
. . . x1,n∗

R

...
. . .

...
xI,n∗

1
. . . xI,n∗

R




 = (xi,n∗

r
) with i = 1, . . . , I and r = 1, . . . , R.

Again, the matrix X∗ consists of the “simulated” log-returns. We revise to

Λ = exp(X∗) =






exp(x1,n∗

1
) . . . exp(x1,n∗

R
)

...
. . .

...
exp(xI,n∗

1
) . . . exp(xI,n∗

R
)






= (λi,r) with i = 1, . . . , I and r = 1, . . . , R.

Summing up the columns generates the portfolio return λK
r of the r-th Monte

Carlo simulation run

λK
r =

1

I

I∑

i=1

λi,r for r = 1, . . . , R

Taking the mean of all simulated portfolio returns λK
r induces the expected or

simulated portfolio return for the next K trading days:

λK =
1

R

R∑

r=1

λr (3.8)
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Important Remarks

1. K ≪ N . As the data is divided into N
K = δK sets and these are used

for the empirical distribution Fi,δK and its inverse F−1
i,δK , respectively, it

is obvious that N should be much bigger than K. Thus, the error of
equation (3.7) is kept small and its approximation is adequate.

2. The computation of matrix U∗ is very time-consuming as equation (3.7)
has to be run over three indices i = 1, . . . , I, n = 1, . . . , δK and r =
1, . . . , R.

4 Controlling the Risk

For most financial companies it is nice to have a good approximation for the
expected portfolio return for the next K trading days. However, what is much
more important to know - especially for departments such as controlling or risk
management - is the inherited risk of their (stock) portfolio. The basic math-
ematical tools for measuring risk are the value at risk (VaR) and the expected
shortfall (ES). The ES is a sort of expectation of the VaR. Many companies
restrict their operating risk figures to the VaR, we follow suit.

4.1 Value at Risk

4.1 Definition (Value at Risk)
Let α ∈ (0, 1) be some confidence level. The VaR of a (stock) portfolio at
confidence level α is given by the smallest number l such that the probability
that the portfolio return PFR is below or equal to l is not larger than (1 − α).
Mathematically,

V aRα := inf{l ∈ R : P[PFR ≤ l] ≤ 1 − α}.

Thus, the VaR is the quantile function of the return distribution:

qα = F−1
PFR(α) = inf{l ∈ R : FPFR(l) ≤ 1 − α}

in which FPFR is the distribution function of the portfolio return. As confidence
level generally α = 0, 95 and α = 0, 99 are chosen.

We can put the definition in a different, more comprehensive way: With a
probability of 99 % (α = 0, 99) the company can be sure that the portfolio
return PFR is bigger than l, i.e. the V aRα.

4.2 Application

Assume that we should determine the VaR of a stock portfolio of an insurance
company. Suppose that this company is interested in their portfolio risk for the
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next two weeks (K = 10 trading days) and the next month (K = 20 trading
days). We are on actuarial fields, thus the chosen confidence level is α = 0, 99.

Somehow we need a simulated distribution function for the portfolio return.
By means of chapters 2 and 3 this is easy to achieve. Instead of calculating the
mean - equations (2.6) and (3.8) - we can build a distribution function out of the
vectors Ŝr and λr. This can be done via the MATLAB command hist which
produces a density function. The result is then used to receive the quantile
function from which the VaR is derived.

In MATLAB it is possible to specify the VaR directly with the expression
quantile(Ŝr, 1 − α) and quantile(λr, 1 − α), respectively.

Therefore, the VaR for COP is

V aRC
α = quantile(λr, 1 − α)

and the VaR for COR is

V aRC
α = quantile(Ŝr, 1 − α).

4.3 Numerical Results

We analyse a stock portfolio of 13 DAX-quoted corporations. Collecting N =
1788 daily log-returns of these companies from January 2001 to January 2008,
we compute the VaR by means of both COP and COR for K = 10 and K = 20
trading days. Concerning the structure of the portfolio we have to point out
that the assets were not equally weighted. Of course, it is neither possible to set
Si

0 = 1. For a Monte Carlo simulation of R = 100.000 we receive the following
results.

VaR computations - R = 100.000

basis confidence level COP COP COR
Gaussian copula t-copula

K = 10 α = 0.99 0,8930 0,8855 0,9144
K = 20 α = 0.99 0,8295 0,8232 0,8709

We see that the t-copula delivers the lowest VaR on the two and four week basis,
closely followed by the results of the Gaussian copula. The difference between
COR and COR is remarkable especially in the case of the monthly basis K = 20.

4.4 Backtesting

The results are not very meaningful without any comparisons. That’s why we
compare the 2-weeks and monthly returns from January 2001 to January 2008
with the VaR of COR (green line) and the VaR of COP by means of the t-copula
(blue line). That procedure is often called backtesting.

It is significant that COR underestimates the risk as well for the 2 week outcomes
as for the monthly returns.
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Figure 4.1: VaR compared to portfolio returns

4.5 Goodness-of-Fit Test

We would like to spare the details and just indicate that we applied a goodness-
of-fit test for COP. In brief, this test shows with help of a χ2-test if the calibrated
copula is really suitable for our data. For the Gaussian copula the hypothesis
is rejected whereas the hypothesis for the t-copula is supposed to be correct.
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(a) Gaussian copula, K = 10
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(c) Gaussian copula, K = 20
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(d) t-copula, K = 20

Figure 4.2: quantile-quantile-plots for the goodness-of-fit test

In figure 4.2 we see the graphical result of the goodness-of-fit tests. In case of a
perfect fit one estimates that all crosses would be on the dotted line. Especially
the Gaussian copula does not match the line in the tails (see 4.2a and 4.2c). This
is the mainly reason why the hypothesis is rejected for the Gaussian copula.
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5 Conclusion

Figure 4.1 is significant. Concerning a backtest, COR would have underesti-
mated the portfolio risk whereas COP captures the risk structure.

Moreover, the Gaussian copula fails the goodness-of-fit test which turns out
the t-copula to be an appropriate candidate for the estimation of our stock
portfolio risk on a confidence level of α = 99%. It is a popular perception
that financial returns are heavy-tailed and often modelled by t-distributions
concerning the univariate case: the risk of asset return lies in the lower tails its
distribution. Now, for the multivariate case (the portfolio return) correlation is
not able not grasp this risk because it does not model the dependency structure
in an adequate way. The fact that asset returns are highly mutually dependent
especially in times of bear markets is not captured by means of COR. The
recent years - in times of financial crisis - showed that multivariate dependency
structures must be adhere to.

The COP is particularly suitable for this fact, at least it minds the dependency
structure better than the standard approach. The short-coming for financial
companies employing COP is obvious: a lower VaR means to allocate more risk
capital which cannot be used for other investments.
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